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“Progress in science depends on new 
techniques, new discoveries, and new 

ideas, probably in that order” 

Sydney Brenner, Nature, June 5, 1980

“But one thing is certain: to understand 
the whole you must study the whole” 

Henrik Kacser, 1986

SCOPE OF THE TALK

• Philosophical elements of systems biology
• Genetic programming analysis of the metabolome
• Metabolic footprinting – a novel strategy for 

functional genomics and mode of action studies
• Tuning mass spectrometers via genetic search
• Metabolomics for disease diagnostics
• Systems Biology of the NF-κB signalling pathway
• Cell Signalling as signal processing

• MIB and Conclusions

New ideas, new techniques and new developments
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Lazebnik – how a biologist learned 
to fix a radio 

Cancer Cell 2, 
179-182 (2002)
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The cycle of knowledge
‘KNOWLEDGE/

RULES

OBSERVATIONS

HYPOTHESIS/
ANALYSIS/
DEDUCTION

SYNTHESIS/
INDUCTION

dB

Timeline

• Pre-genomics Post-genomics/ functional 
genomics Systems Biology

• Organismal Cellular Molecular 
Systems

• Forerunners, e.g. in Metabolic Control 
Analysis, Metabolic Engineering, Systems 
Theory, Synergetics

An important stress on the role of technology 
development in advancing science

• Almost Anything we can do now is the result of 
advances in technology, which have no ‘hypothesis’ 
(beyond the view that such an ability would be 
valuable)

•Lest you doubt it, a few examples from the modern 
era

e.g…..(most with Nobel prizes)

• Restriction enzymes
• Sequencing DNA and proteins
• PCR
• Computation and Internet for 

bioinformatics and even literature access
• Mass spectrometry for proteomics
• Voltage clamp & patch clamp for 

neurophysiology

One view of systems biology

Computation/
Modelling

Experiment

Theory



‘Bottom-up’ Systems Biology pipeline (dry)
1. Qualitative (‘structural’) model – who talks to 

whom as substrate, product or effector  
2. Quantitative model including ‘real’ or 

approximate equations describing individual steps 

3. Parametrisation of those equations 
4. Run the model and assess its most important 

parameters
5. Iteratively , with wet data, GOTO 1….

Systems biology experiments 
(including the wet side) ….

• Set up a well-defined system
• Effect systematic perturbations (genetic, 

environmental, chemical)
• Measure a time series of as many 

concentrations of variables, especially RNAs, 
proteins, metabolites (the ’omes) as possible

• Model the system and compare the 
experimental time series to those generated by 
the model

• Repeat iteratively

Post-genomics
• A chief result of the systematic genome sequence programs 

was the discovery of huge numbers of genes whose 
existence - let alone function - had previously gone 
unrecorded

• Post-genomics methods (aka ‘functional genomics’) are 
designed to find out the function of such genes, often by 
global ’omics methods in ‘known’ and ‘unknown’ 
genetically defined strains

A specific first aspect relates to determining which 
players are involved in any particular cellular process
(starting to make the structural model)

’omics methods for high-
information-content analysis

• Genome
• Transcriptome
• Proteome
• Metabolome
• Physiome
• etc.

Why metabolomics?

(i) ‘downstream’ - changes in the metabolome (metabolite 
concentrations, not fluxes – see MCA tutorial on our website for 
‘why’) are amplified relative to changes in the transcriptome and 
the proteome, and are numerically more tractable,

(ii) no need for a whole genome sequence or a large EST databases to 
be available for each species, 

(iii) metabolic profiling is much cheaper and very much more high-
throughput than are proteomics and transcriptomics, making it 
feasible to examine large numbers of samples from organisms that
have been ‘grown’ under a wide range of conditions, 

(iv) technology is generic as a given metabolite - unlike a transcript or 
protein - is the same in every organism that contains it (of course 
this is not true for secondary metabolites…), 

(v) such methods have already been demonstrated.

• Global in scope (for high-information-content ’omics methods); 
no prejudgement of ‘the answer’ 

• User-intelligible output

The ideal analytical method
• Specific or highly selective
• Precise Accurate Reproducible
• Rapid Sensitive Non-destructive
• Low cost Reagentless / Probes biologically inert
• Robust equipment
• Easy to set up and calibrate
• Capable of axenic operation
• Signals linear with determinand concentration



A glycolytic ‘pathway’,
where we nominally 
know the metabolites

and the enzymes
involved

And if we know their parameters……

Simulating metabolism in the ‘forward’ 
direction – a major part of ‘Systems Biology’

ODE-based modelling

• But for this (bottom-up) approach we 
need to know the parameters such as 
binding and rate constants, and these are 
not measured using ’omics strategies

• Omics measurements are measurements 
of variables, and variables cannot control 
other variables (nor parameters)

Omics lead to a ‘network-
finding’, 

inverse problem

These methods do not scale 
well, the number of available 

samples is often small, and the 
problems are ill-posed

• Better is to divide the problem up into 
smaller problems to see the main players

Basic structure of propositional systems

•

Sample 2…

Sample 1

Y-var
2

Y-var
1

X-var
3

X-var
2

X-var
1

Objects 
going down 
in different 
rows

Variables going across in different columns

} }



The machine learning paradigm

INPUT DATA

OUTPUT
CLASSES

MATHEMATICAL
TRANSFORMATION(S)

The combinatorial optimization problem

• Making a predictive model using n x-variables to predict just 1 
y-variable gives 2n models in which each one is used or not, 
before we even parametrise it, which is OK…but….

• …if n = 100, 2n = 2100 ~ 1030; the lifetime of the Universe in 
seconds ~ 1017…..

• If each variable can take just 10 values this is 10n, etc…
• Machine learning methods are designed to search these huge 

spaces effectively
• …but in particular…

The combinatorial optimization problem

• Making a predictive model using n x-variables to predict just 1 
y-variable gives 2n models in which each one is used or not, 
before we even parametrise it, which is OK…but….

• …if n = 100, 2n = 2100 ~ 1030; the lifetime of the Universe in 
seconds ~ 1017…..

• If each variable can take just 10 values this is 10n, etc…
• Machine learning methods are designed to search these huge 

spaces effectively
• ….the number of combinations if we only allow it to use 1,2,3,4 

or 5 variables is just 100, 4950, 1.6 x 105, 3.9 x 106 and 7.5 x 107. 
These are much more tractable numbers, and are also likely to 
provide comprehensible explanations  (and see later)

Some chemometric and related methods 
Unsupervised Supervised
Just work on x-data use y-data too

• Principal Components 
analysis

• Clustering methods
• Kohonen neural networks

• Back-prop neural 
networks

• Partial least squares 
regression

• Canonical variates analysis
• Genetic Algorithms
• Genetic programming
• Classification & Regression trees

• Discriminant Function 
Analysis

• Inductive Logic 
Programming

The functional genomics agenda (inter alia) is a supervised 
learning problem in which we use data from genes of known 

function to ‘calibrate’ those of unknown function

Tibtech 18, 93-98 (2000)
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Co-response analysis of metabolites 
relative to G6P (arc cot of ratio of ln of changes)
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Clustering of yeast functional genomics mutants –
but - no ‘rule’ and no explanatory power 

Evolutionary computing (subsets include 
Genetic Algorithms, Evolutionary Strategies, 

Evolutionary Programs, Genetic Programming)

1. A population of individuals, each encoding a 
particular solution to a problem

2. A ‘fitness function’, by which we can evaluate 
how good that solution is (together these represent 
the ‘landscape’…)



A scientific / combinatorial landscape

Red*: Simplex hill-climber
Yellow – Hooke & Jeeves
Purple – genetic algorithm
White - GA members
Redline – simulated annealing

3.   A selection strategy for determining who 
contributes to the next generation

4. Introduction of genetic diversity by e.g. mutation 
and recombination

5. A stopping criterion.
ALGORITHM CYCLES THROUGH STEPS 1 
TO 4 UNTIL 5 IS SATISFIED

1. A population of individuals, each encoding a 
particular solution to a problem

2. A ‘fitness function’, by which we can evaluate 
how good that solution is (together these represent 
the ‘landscape’…)

EVOLUTIONARY ALGORITHMS

GP/GC BUILDING BLOCKS

A GP (e.g. Koza 1992) has two types of ‘gene’
Terminals: numerical constants or input (x-) variables.
Nodes: mathematical operators or program functions.
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GP/GC BUILDING BLOCKS

A GP (e.g. Koza 1992) has two types of ‘gene’
Terminals: numerical constants or input (x-) variables.
Nodes: mathematical operators or program functions.

3.425 Input 5

A + Bsin(A)
If A > B return C

else return D

A A B A B C D

Constant
Terminal

Variable
Terminal

1 Input
Node

2 Input
Node

4 Input
Node

x

y

z

cos

add

divide

Output

GP/ GC FUNCTION (PARSE) 
TREE 

• The genes are organized into a chromosome with a tree 
structure.
– The number of nodes is variable.
– Nodes can be of any type.

• To evaluate the tree, each node evaluates its argument nodes, 
processes the returned values, and returns its own value.

x + cos(y) 
zOutput =

GP MUTATION

• Each node accepts and returns values of the same type.
– Trees are modular, allowing logically consistent changes to be introduced.

• A node is randomly chosen and modified.
– It may be given a different operator with the same number of arguments.
– It may be replaced by a new random sub-tree.

• Terminals are mutated by slightly perturbing their numerical values, or 
randomly choosing a new input variable.



GP CROSSOVER

• Two parents are chosen with a probability proportional to their 
fitness.

• A node is randomly chosen on each parent tree.
• The selected sub-trees are swapped.

– The new trees are still syntactically correct.
• The new individuals replace less fit members of the population.

Specific advantages of Genomic 
Computing

• Not all variables are used – this at once both (a) cuts the 
search space hugely and (b) makes the rules intelligible

• Evolutionary computing methods build on partially 
successesful rules and are highly efficient at negotiating 
complex search spaces.

• Preprocessing and normalization are unnecessary – the 
system learns what it is best to normalize to.

• Ranking of objects exploits the full range of information 
available (conventional methods throw it away), and 
ranking of variables forces explanation to be as simple as 
useful – which avoids overfitting and greatly improves 
generalisation

Salicylate experiment – effect of salicylate
hydroxylase in plants following infection?

(data of Rob Darby & John Draper, Aberystwyth)
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Salicylate experiment – effect of salicylate
hydroxylase in plants following infection?

(data of Rob Darby & John Draper, Aberystwyth)
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Deductive analysis of the salicylate
experiment 

• The plants containing SH-L are indeed more 
sensitive than is the WT to the subsequent 
wounding

• The salicylate concentration is indeed much lower

Deductive analysis of the salicylate
experiment 

• The plants containing SH-L are indeed more 
sensitive than is the WT to the subsequent 
wounding

• The salicylate concentration is indeed much lower

• This is (merely) consistent with its involvement in 
the normal defence response

• However, while the LC data show us the changes, 
they do not show us which changes matter for the 
problem of interest



Unsupervised: PCA fails to discriminate 
plants with and without SH-L 

(coded 1 / 0 in this long-time-course experiment)
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Supervised: using GP, the top rule that 
evolves is both simple and accurate (gets 
95% of all samples correctly assigned)

A plot of the ‘top 3’ variables allows visualisation of what 
is important – closed circles contain SH-L – and light up 
2 other important but previously neglected metabolites -

the next big thing in plant defence research
Scatter Plot

NB the 3D plot 
also shows that the 
problem is not linearly 
separable
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Metabolic footprinting – a novel 
genome-wide approach for functional 

genomics
• Metabolic ‘fingerprinting’ of microbes is difficult  

as quenching must be fast (turnover time ~ 
concentration/flux) and a small intracellular space 
must be separated from a large extracellular one

• So, we recognise that in unbalanced growth what 
microbes will excrete is a function of which 
pathways are operating

• We study therefore not the metabolic ‘fingerprint’ 
but the metabolic ‘footprint’ of what they leave 
behind in the medium 

Metabolic footprinting experiments
• Use Saccharomyces cerevisae, because of its 

sequenced genome and the availability of a complete 
series of single-gene knockout strains

• Grow cultures in microtitre plates, take 
supernatant, mix with solvent and squirt 
directly into an electrospray mass 
spectrometer 

• (‘DIMS’ – Direct Injection 
Mass Spectrometry)



The metabolic footprint varies with growth 
phase and is richest in stationary phase
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The metabolic footprints differentiate strains, 
and similar strains cluster together
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Metabolic footprints differentiate strains, similar strains 
cluster together, and can be used to predict ‘unknowns’
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Genetic Programming can provide a 
simple rule for distinguishing strains: 

• IF m/z_201 > 0.00126 of TIC THEN
deletant is ‘nitrilase’

• This is true for both the training set and 
the unseen cross-validation and test sets

• By analysing m/z_201 using tandem mass 
spectrometry we should expect to identify 
the biochemical basis for the rule

Mode of action may be discriminated, as well 
as effects of gene KOs



…and GP lights up 2 variables that 
discriminate uncouplers from the rest
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Tuning mass spectrometers via 
genetic search

14 parameters to describe ESMS 
conditions

Figure 2
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Table 1: Variables and their range.  
 

Code Variables Range 

V1 Sample flow rate (µL/min) 20-500 
V2 Desolvation gas flow rate (L/h) 150-500 
V3 Nebulizer gas flow rate (L/h) 10-20 
V4 Source temperature (º C) 40-150 
V5 Desolvation temperature (º C) 100-400 
V6 Capillary voltage (V) 1500-3500 
V7 Skimmer 1 (sample cone) voltage (V) 10-150 
V8 Skimmer 2 (extraction cone) voltage (V) 0-10 
V9 Transport hexapole voltage (V) 0-20 
V10 Differential pumping Aperture voltage (V) 0-20 
V11 Acceleration lens voltage (V) 0-200 
V12 Focus voltage (V) 0-200 
V13 Pre-filter voltage (V) 5-15 
V14 MCP detector voltage (V) 2300-2700 

 
 

5 proteins, each flying with 
very different efficiencies
(A) insulin (5.7kDa), (B) ubiquitin (8.6 

kDa), (C) cytochrome c (12.3 kDa), 
(D) lysozyme (14.3 kDa), and (E) 
myoglobin (16.9 kDa), (F) a 
spectrum of an equimolar mixture 
of the five proteins, and (G) their 
combined theoretical mixture 
spectrum, all obtained under one 
set of instrumental conditions. 

Figure 1
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Note the huge difference between 
‘theoretical’ and ‘experimental’ spectra in 
the mixtures (G vs F)

We used 6 generations, 60-80 runs in 
each generation, 439 experiments

Fitness is a composite of TIC, equality of 
contribution of each protein and 

‘coverage’ of charge states in mixture
• Distribution of the relative fitness (%) 

for the 14 univariate variables (V1-V14) 
(data are the experimental results) 



PCA analysis of the search space, showing 
strong multimodality/ epistasis

Size = fitness, Colour = generation number

GP is used to find a rule that best explains 
fitness; many rules come up with an unusual 

combination of variables.…
As well as low values
of V7 (sample cone 
voltage) we want V8 
(extraction cone voltage)
to be just higher than it.
A new relationship – from 
the data alone (no 
hypothesis!)

One may also
evolve conditions 
in which only a 
particular protein 
is observed, 
although all 5 are 
present together 
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The Robot Scientist
• Some background knowledge (metabolic pathways are 

graphs (i.e. networks) with nodes and edges)
• Aim is to find the site of a genetic lesion (an edge in the 

graph) on the basis of growth experiments (organisms 
whose graphs are unconnected to the synthesis of essential 
nutrient sources do not grow in their absence)

• Chooses a growth experiment to perform and then does it
• Iterates around the cycle until it has a final hypothesis



Logical model of amino acid metabolism Robot scientist abduction of facts

Robot Scientist, random, naïve (cheapest expt)

Closed-loop, multi-objective 
optimisation of GC-tof analysis

Size of search space > 200,000,000 combinations of settings….

Serum, generation 1 Serum, final



Closed-loop, multi-objective 
optimisation of GC-tof analysis

Serum final Pareto front
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Disease diagnosis by GC-tof- MS – look for 
metabolites that discriminate ‘cases’ from ‘controls’

DISEASE

Disease diagnosis by GC-tof- MS – look for 
metabolites that discriminate ‘cases’ from ‘controls’

IF 403 < 0.035 AND (IF 415 < 0.001 OR IF 427 > 0.001) THEN disease
IF 403 > 0.015 AND (IF 415 <0.012) THEN disease

NFκB (1)
• NF-κB is a nuclear transcription factor that 

can modify the expression of many other 
genes 

• It is held inactive in the cytoplasm of non-
stimulated cell by three IκB isoforms. 

• It is widely and diversely implicated in 
cancer, apoptosis and in diseases such as 
arthritis

Evidence for ‘involvement’
1. c-rel (an alternative NF- κB subunit like 

p65) and Bcl-3 (an IκB) are known 
oncogenes.

2. Increased nuclear localisation of NF- κB 
is associated with many cancers.

3. NF-κB clearly regulates both cell cycle 
and apoptosis and is involved in the 
response to DNA damage.

Question 1: so what is a good drug target in the NFκB pathway?
Question 2: and how do we measure that?

The big question…
(aka the ‘crosstalk problem’)

How can the same thing (i.e. NF-κB) – it is 
assumed by changes in its concentration 
in the nucleus – be ‘involved’ both in cell 
proliferation in cancer and in apoptotic 
cell death (two processes that are pretty 
well opposite in character)?!



Summary of NF-κB – 3 steps
1. NF-κB is a nuclear 

transcription factor and is 
held inactive in the cytoplasm 
of non-stimulated cell by three 
IκB isoforms

2. During cell stimulation, the 
IKK complex is activated, 
leading to phosphorylation
and ubiquitination (and 
removal) of the IκB proteins. 

3. Free NF-κB translocates to the 
Nucleus, activating genes 
including IκBα. IκBβ& -ε are 
synthesised at a steady rate, 
allowing for complex temporal 
control of NF-κB activation 
involving negative feedback 

(1)

(2)

(3)

Many effectors (e.g. TNFα) can 
activate IKK

Hoffman et al (2002) produced a reduced 
model for cells lacking two IκB isoforms

(IκBβ and IκBε)

Hoffman et al used the modelling system 
Gepasi written by Pedro Mendes

We have reproduced this model (modified 
to remove mistakes in the original, now 

corrected) using Gepasi

The model has 64 unidirectional reactions & 26 variables

Violet red circles = IκB-NF-κB cytoplasmic reactions; Blue Arrows and circles = Nuclear Transport; Magenta Arrows 
and Pink circles = IκB mRNA synthesis (including transcription, translation and degradation); Black Arrows and white 
circles = IκB-NF-κB nuclear reactions; Light Green Arrows and circles = IκB Phosphorylation and Degradation 
reactions; Brown Arrows and brown circles = Bimolecular IKK- IκB and tri-molecular IKK- IκB-NF-κB; Yellow 
Arrows and circles = IKK slow adaptation coefficient



Cartoon of nuclear NF-κB after 
IKK addition
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After pre-equilibration for 2000s, 
IKK is ‘added’ at 0.1 µM

IKK
NFkBn

“Real” oscillations of GFP-NFκBn
observed microscopically (and averaged) Tracker

• A work bench with tracking procedures 
at three levels
– Manual
– Semi-automatic
– Automatic

• Strong browsing capabilities with result 
display and export.

1. Confine tracking in a small region, 
less computation and easier tracking 
job.

2. One may apply different algorithms 
or parameters for different ROIs.

Four regions

• ROI

• Cell boundary

• Nuclear boundary

• User input

“Real” oscillations of GFP-NFκBn
observed microscopically with 

labelled IκBα and NFκB

Nelson et al 
2004



“Real” oscillations of GFP-NFκBn
observed microscopically with labelled 

IκBα and NFκB

Nelson et al 
2004

NB we measure individual cells, not ensembles

The timing and amount of oscillations depend 
strongly on the type of stimulation (various amounts 

and times of TNFα, different individual cells)

Nelson et al 
2004

What about the model? Sensitivity analysis

• A generalised form of the control 
coefficients of MCA

• Dimensionless
• Describe quantitatively which reactions 

are most ‘important’
• In favourable cases (especially steady 

states) there are summation theorems
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Sensitivity coefficients of T3 for δP of 10% or 100%

• Only 8 reactions have significant sensitivity coefficients when
T3 is measured

• Note the change in sign for reaction 29 – very nonlinear system

When all the outputs for NFkBn
fluctuations are considered, only 
8-9 out of the 64 reactions show 

any significant sensitivity to their 
parameters

9 important reactions
9: IKKIκBα-NF-κB catalytic rate constant

28: IκBα (IκBα-t) Inducible mRNA synthesis rate constant
29: IκBα (IκBα-t) mRNA degradation rate constant

34 : IKKIκBα association rate constant
36: Constitutive IκBα translation rate constant

38: IκBαn nuclear Import Rate constant
52: IKKIκBα-NF-κB association rate constant

61: IKK signal onset slow adaptation coefficient
62: IKKIκBα catalysis rate constant

What do they have in common?



They all involve free IKK and/or 
IκBα

9: IKKIκBα-NF-κB catalytic rate constant
28: IκBα (IκBα-t) Inducible mRNA synthesis rate constant

29: IκBα (IκBα-t) mRNA degradation rate constant
34 : IKKIκBα association rate constant

36: Constitutive IκBα translation rate constant
38: IκBαn nuclear Import Rate constant

52: IKKIκBα-NF-κB association rate constant
61: IKK signal onset slow adaptation coefficient

62: IKKIκBα catalysis rate constant

A phase plane plot shows the intimate 
connection between IKK, IκBα and NFκBn

Effect of changing 3 parameters 
by ± 2 logs on NFκBn dynamics

Prediction: increasing k28 will increase the 
period of the oscillations (e.g. T2 and T3)

Experiment (left) matches 
simulation (right)



Mathematical challenge is the 
Inverse Problem – work out the 

system that gave THIS time series
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… and this time series
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…and all 3 (or 23) together
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One example of solving inverse problems 
using genetic programming

(Koza)

Use of genetic programming
to evolve circuits (Koza)



One example – genetic programming
to evolve circuits (Koza) Circuits as functioning i/o systems

We usually consider biological circuit 
elements such as enzymes as ‘responding’ 

solely to amplitudes

e.g. Michaelis-Menten:

v = (Vmax.S)/ ( S + Km)

Thus, v depends ONLY on the 
‘instantaneous’ concentration of S

What is it in these hugely complex 
dynamics that actually controls 

downstream events, including cell 
fate?

If we had set up an assay that recorded 
solely the (change in)the amplitude or  
concentration of NF-κB at time t we 
would have been completely misled as to 
any possible efficacy of a drug, as the 
encoding of the important signal is not 
simply in the concentration but the 
frequency.

Frequency encoding 

• Having the effective signal frequency-encoded allows the same ‘medium’ (NF-kB) to 
carry different ‘messages’ using changes in the frequency or dynamics rather than the 
amplitude of oscillatory signals per se

• There is thus no ‘crosstalk’ (and no crosstalk problem)
• But this also means that great care must be used if such systems are to be exploited for 

providing novel drug targets simply by inhibiting particular steps, as the downstream 
events are not easily related to the activities of the individual steps

• (Additional means of avoiding crosstalk are likely also present, e.g. extra transcription 
factors providing a logical AND.)

• More generally, we need to recognise signalling systems as signal processing systems

Signalling as signal processing

• This is not just semantics; in the signal 
processing view of signalling we thus lay stress 
not so much on the amounts and nature of 
signalling molecules but on their dynamics and 
on the processing structures that are necessary 
to distinguish different dynamics – just as we 
might distinguish 2 speakers via their voice 
patterns although both use the same 
intermediary medium



Any metabolite or signalling pool serves to act as 
a low-pass filter as it must be ‘filled up’ before 

its concentration is large enough to be converted 
to the next product

A B  C D E
e1     e2     e3     e4

The pool size is like a capacitor and the kinetics of production like a resistor

Other network motifs are emerging, 
e.g. the coherent feedforward loop

The same signal can lead to two different 
outputs depending on the filtering/detector

Low-pass 
filter

High-pass

filter

One signal

Output 1, e.g. 
apoptosis

Output 2, e.g. 
proliferation

Multiple LP filters in series act as a delay line

This may in part explain why pathways have multiple steps 
(although amplification can be an important reason too)

Sensitivity analysis is generally useful for 
looking at complex systems 

(e.g. in a study of drug target identification) 

The Manchester Interdisciplinary Biocentre (2005-)

MIB Faculty, postdoc and studentship positions available
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MIB

The MIB model
- a major international research centre
- a partner to the disciplines
- parallel to
schools/faculties

- one of a number
of expected IRCs

MIB

http://www.mib.ac.uk

The MIB – level D

Overall conclusions

• Systems biology represents and requires a judicious 
interplay between high-quality, large-scale 
experimentation and suitable computational modelling.

• This is of course a very multi- and interdisciplinary 
endeavour, and Collaborative Systems Biology 
endeavours (localised or distributed) may be a useful 
strategy

• Technology development is a major area; this is not, 
and certainly not only, hypothesis-dependent science

• Vertical integration and studying systems as systems is 
crucial

• Systems and subsystems talk to each other in complex, 
nonlinear ways – this is the ‘language of cells’ that we 
must learn to understand

Credits
Aberystwyth

Jem Rowland   
Ross King
Royston Goodacre
Mike Winson
David Broadhurst
Hazel Davey
Jess Allen

Royston Goodacre
Josh Knowles
Rick Dunn
Dave Ellis
Steve O’Hagan
Adaoha Ihekwaba
Marie Brown
Dave Broomhead
Hailin Shen
Irena Spasic
Seetharaman Vaidyanathan

Steve Oliver
Phil Baker
Louise Kenny
Andy Hayes
Nikki Burton

Liverpool: Mike White, Dave Spiller.  Pfizer: Neil Benson, Rachel Grimley

Manchester

Another kind of nonlinear, 
oscillatory dynamics…..the music 

of Dr Subhendu Ghosh

• The auspicious day has come….it 
is the time to pack up the 
pending work…it is the time to 
welcome you…..

Metabolomics, machine learning and 
modelling: towards an understanding of the 

language of cells
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