

Marileen Dogterom FOM Institute AMOLF Amsterdam, NL dogterom@amolf.nl

Assembly, Forces, and Organization of the Cytoskeleton

Laura Munteanu

Gertjan Verhoeven

Liedewij Laan

Paige Shaklee

Christian Tischer

Julien Husson

Technical support: Roland Dries Henk Bar Chris Retif

Former:

Marcel Janson Jacob Kerssemakers Cendrine Faivre Guillaume Romet-L.

DYNAMIC MICROTUBULES GENERATE FORCES IN CELLS

Nuclear positioning in interphase fission yeast cells

Pushing and pulling at microtubule – kinetochore interface

Rieder et al.

NUCLEAR POSITIONING IN INTERPHASE FISSON YEAST

Tran et al (2001), JCB **153**, 397

MT end binding proteins and protein delivery

Tea1

Pmal3n

D. Brunner, EMBL

Cell polarity, Protein patterns, and MT-cortex interactions

Asymmetric spindle positioning

Cell locomotion

K. Kaibuchi

PROGRAM

- 1) Force generation capabilities on single MT level Force-regulation of dynamics
- 2) Positioning in simple model(s) (experiments)
- 3) Force generation and positioning in vivo
 - Regulation ?
 - Fine tuning ?

Single MT force generation in vitro

Peskin et al. 93

Aster positioning in vitro

Polymerization forces enough for aster positioning

 $\partial_t p_+ = -f_{+-}p_+ + f_{-+}p_- - v_+\partial_x p_+$

1D model

$$\partial_t p_- = +f_{+-}p_+ - f_{-+}p_- + v_-\partial_x p_-$$

- $f_0 P_0 = v_+ p_+ \big|_{x=0}$ $f_b P_L = v_- p_- \big|_{x=L}$
- $\partial_t P_0 = v_- p_- \big|_{x=0} f_0 P_0$

$$\partial_t P_L = v_+ p_+ \Big|_{x=L} - f_b P_L$$

NUCLEAR POSITIONING IN INTERPHASE FISSON YEAST

Enhanced Catastrophe Rate at Cell Ends in Interphase Fission Yeast Cells: IN RESPONSE TO FORCE?

Detection of MT catastrophes by automated movie analysis

- GFP-tubulin
- 3D spinning disk confocal microscopy
- Maximum projections of 3D stacks, dt=8 sec

20 µm

Francois Nedelec, EMBL Heidelberg

Full 3D simulation taking into account:

- Measured dynamic parameters in fission yeast
- Confinement effects, cell shape
- Mechanical effects

Tutorial:

a) Introduction Polymerization forces, Ratchet model

b) Force measurements in vitro

c) Positioning in Microfabricated chambers Simple model

d) Forces and catastrophes in Fission Yeast

Results:

Summary of some results

Microtubule structure

With an applied force F:

$$\frac{k_{on}c}{k_{off}}(F) = \frac{k_{on}c}{k_{off}} \exp\left(-F\delta/k_{B}T\right)$$

$$\frac{k_{on}c}{k_{off}} = \exp\left(\Delta G / k_B T\right)$$

$$V(F) = \delta \left(k_{on} c e^{-\alpha F \delta / k_{B}T} - k_{off} e^{(1-\alpha)F \delta / k_{B}T} \right)$$

$$F_{\max} = \frac{k_B T}{\delta} \ln\left(\frac{k_{on} c}{k_{off}}\right)$$

 $0 \le \alpha \le 1$

Peskin et al. 93

Single MT force generation in vitro

Individual MT growth: $V_0 = 2.8 \ \mu m/min$

Buckling experiment

MT length > 5 μm Small force: few pN

MT length < 5 μm Large force: > 10 pN

Growth stalls, Fast catastrophes

Growth slows down

Scale bar 5 μ m

Catastrophe times under force

Dynamics: Response to Force

Janson & Dogterom, PRL 2004

Janson et al., JCB 2003

Peskin et al. 93

Multifilament Brownian ratchet ?

"Optimal" growth $\int \Delta x = \frac{\delta}{N}$

Independent growth

 $0 \le \Delta x \le \delta$

Mogilner & Oster, EBJ, 99; van Doorn et al, EBJ, 00

STALL FORCE ?

DYNAMICS AT MOLECULAR SCALE ?

LASER TWEEZERS

"Key hole" trap:

Kerssemakers et al, APL 2003

Barriers: Schek et al, BPS (2003)

In optical trap, as MT grows: Force increases, Velocity decreases, and stalls ?

Towards molecular resolution ?

Some fast length increases larger than dimer size ????

MT regulator: Xmap215*

Can bind 7 to 8
tubulin dimers

 Enhances growth of microtubules
Mechanism ??

*Gift Tim Noetzel/Tony Hyman

With XMAP215: large step-like features

\rightarrow XMAP215 enhances growth by 'templating' ?

With Tim Noetzel / Tony Hyman, MPI-CBG Dresden

Kerssemakers et al, Nature, 2006

PROGRAM

- 1) Force generation capabilities on single MT level Force-regulation of dynamics
- 2) Positioning in simple model(s) (experiments)
- 3) Force generation and positioning in vivo
 - Regulation ?
 - Fine tuning ?

Dynamics: Response to Force

Janson & Dogterom, PRL 2004

Janson et al., JCB 2003

NUCLEAR POSITIONING IN INTERPHASE FISSON YEAST

Enhanced Catastrophe Rate at Cell Ends in Interphase Fission Yeast Cells: IN RESPONSE TO FORCE?

Possible ways to enhance the catastrophe rate near cell boundary

Detection of MT catastrophes by automated movie analysis

- GFP-tubulin
- 3D spinning disk confocal microscopy
- Maximum projections of 3D stacks, dt=8 sec

20 µm

- Catastrophe rate enhanced at cell ends

Cell size (µm)

Correlated catastrophes when contact at both ends

Evidence that the abrupt increase at cell end is due to compressive forces

"Force effect" decreases with cell length

Conclusions:

In vitro:

- Microtubules slow down under force leading to fast catastrophes

In vivo (interphase fission yeast):

- Catastrophe rate higher for longer MTs
- Additional enhancement at cell boundaries due to force

Polymerization forces can alter microtubule dynamics locally, thus contributing to MT organization in cells

Acknowledgements

Optical trap: Koen Visscher (Arizona) Astrid v/d Horst (AMOLF) Actin experiments: Julie Theriot (Stanford) Matt Footer (Stanford) MT pushing, theory: Bela Mulder Catalin Tanase

Yeast Experiments: Damian Brunner (EMBL) Thomas Surrey (EMBL) Francois Nedelec (EMBL) XMAP215: Tony Hyman (MPI Dresden) Tim Noetzel (MPI Dresden) Axonemes: Matt Footer (Stanford) **GMPCPP**: Tim Mitchison (Harvard) Dynein: Ron Vale (UCSF)