Control and regulation of PGK gene expression in *Trypanosoma brucei*

<u>Jurgen R. Haanstra</u>^a, Mhairi Stewart^b, Van-Duc Luu^b, Simon Haile^b, Marina Cristodero^b, Chi-Ho Li^b, Arjen van Tuijl^a, Hans V. Westerhoff^a, Christine Clayton^b and Barbara M. Bakker^a

^aVrije Universiteit, Biocentrum Amsterdam, De Boelelaan 1087, Amsterdam, 1081
 HV, the NETHERLANDS
 ^bZentrum f
ür Molekulare Biologie der Universit
ät Heidelberg (ZMBH), Im
 Neuenheimer Feld 282, 69120 Heidelberg, GERMANY.

Zentrum für Molekulare Biologie Heidelberg

AIM

To unravel at which level(s) gene expression is controlled and regulated in Trypanosoma brucei, using the PGK locus as a case study

Control – Steps have control if a change in that step will give a change in the pathway output

Regulation – The steps that are actually used by a system (e.g. cell) to change the pathway output are regulating

Trypanosoma brucei

Trypanosoma brucei is the causative agent of African sleeping sickness. Both cattle and humans can be infected by bites of the tsetse fly 60 million people are at risk, ~50.000-70.000 infections/year Fatal if left untreated, resistance to current medication is spreading

Life cycle of T. brucei

The PGK locus

From Clayton, EMBO J. (2002)

Precursor processing

Actinomycin D alone (splicing +degradation)

Sinefungin inhibits splicing

Actinomycin D inhibits transcription

Precursor processing

Actinomycin D alone (splicing +degradation)

Sinefungin inhibits splicing

Actinomycin D inhibits transcription

PGKB and PGKC expression

Concentration Control Coefficients

$$\zeta = \frac{\Delta X / X}{\Delta p_i / p_i}$$

e parameters that were varied were: $v_{transcription}$, μ , k_{degrP} , $k_{splicing}$, k_{degrB} and k

$$\sum C_i^X = 0$$

Concentration control coefficients sum up to 0!

Control on [mRNA]

	<u>control of</u>						<u>sum</u>
<u>control on</u>	transcripti on	growth	precursor degradation	precursor splicing	degradation PGKB mRNA	degradation PGKC mRNA	
[precursor] [PGKBmRNA] [PGKCmRNA]	1.000 1.000 1.000	-0.004 -0.023 -0.116	-0.163 -0.163 -0.163	-0.834 0.166 0.166	0.000 -0.981 0.000	0.000 0.000 -0.888	0.000 0.000 0.000

Control on [mRNA]

	<u>control of</u>						
<u>control on</u>	transcripti on	growth	precursor degradation	precursor splicing	degradation PGKB mRNA	degradation PGKC mRNA	
[precursor] [PGKBmRNA] [PGKCmRNA]	1.000 1.000 1.000	-0.004 -0.023 -0.116	-0.163 -0.163 -0.163	-0.834 0.166 0.166	0.000 -0.981 0.000	0.000 0.000 -0.888	0.000 0.000 0.000

Regulation analysis for differentiation from BF -> PF (I)

$$\frac{-\kappa_{splicing} \cdot [precursor] - (\mu + \kappa_{\deg r_i}) \cdot [man_{ij}] - 0}{dt} = 0$$

$$\frac{[precursor]}{dt} = v_{transcription} - (k_{splicing} + k_{\deg rP}) \cdot [precursor] = 0$$
(1)

follows that:

$$nRNA_{i}] = \frac{v_{transcription} \cdot k_{splicing}}{(k_{splicing} + k_{\deg rP}) \cdot (\mu + k_{\deg r_{-}i})}$$
(2)

1 logarithmic space:

$$n[mRNA_i] = \ln v_{transcription} + \ln \left(\frac{k_{splicing}}{k_{splicing} + k_{\deg rP}} \right) - \ln(\mu + k_{\deg r_i})$$

$$(3)$$

we consider transitions from one state to another, e.g. from one life stage to the stage to the

$$\ln[mRNA_i] = \Delta \ln v_{transcription} + \Delta \ln \left(\frac{k_{splicing}}{k_{splicing} + k_{deg\,rP}} \right) - \Delta \ln(\mu + k_{deg\,r_i})$$
(Eq. 14)

Regulation analysis for differentiation from BF -> PF (II)

vision through $\Delta \ln[mRNA_i]$ yields:

$$\frac{\ln[mRNA_i]}{\ln[mRNA_i]} = \frac{\Delta \ln v_{transcription}}{\Delta \ln[mRNA_i]} + \frac{\Delta \ln \left(\frac{k_{splicing}}{k_{splicing}} + k_{\deg rP}\right)}{\Delta \ln[mRNA_i]} - \frac{\Delta \ln(\mu + k_{\deg r_i})}{\Delta \ln[mRNA_i]}$$

is can be written as

 $= \rho \qquad \dots + \rho \qquad \dots + \rho \qquad \dots$

Regulation coefficients

	μ (min ⁻¹)	kdegr (min ⁻¹)		steady state levels (mo	lecules cell ⁻¹)
		<u>PGKB</u>	<u>PGKC</u>	<u>PGKB</u>	<u>PGKC</u>
BF	0.0019	0.09 ^a	0.02	1.2 ^c	12
PF	0.0010	0.01 ^b	0.14	18	1.0 ^d
		Odegradation	Otranscr	$\frac{1}{1}$	ן
	PGKB	0.97	r lidiisch		
	PGKC	0.84		0.16	

$$1 = \rho_{transcription} + \rho_{precursorproces \sin g} + \rho_{deg radation}$$

Conclusions/Discussion

We have experimentally determined PGKC mRNA and protein levels, ribosome density on mature mRNA and precursor processing kinetics

We made a transcription model for PGKB and PGKC expression based on the data from this study and literature data.

Although PGKC mRNA levels is *controlled* at several levels (positively by transcription, precursor splicing and negatively by precursor/mRNA degradation and growth), *regulation* seems to be exclusively at the mRNA degradation level.

The small precursor processing regulation coefficient for PGKC mRNA is very sensitive to errors in the measurement: a half life of the PGKC mRNA increased to 3', completely abolishes the regulation by precursor processing