Systems Biology to Investigate Biochemical Pathways for Metabolic Functions *in vivo*

Paul K. Maciejewski, Ph.D.

Yale University School of Medicine New Haven, CT, USA

(Supported by NIH NS-044316)

Motivations

Broad Aim

To understand the biochemical processes that sustain metabolic/physiological functions

Narrow Aim

To understand the biochemical processes that sustain neurotransmitter trafficking in brain

Glutamate-Glutamine Cycle

Glucose

Approach

Use a variant of metabolic flux analysis to construct possible metabolic cycles that sustain a specific physiological function

Properties of metabolic cycles

- Operate at steady state
- Consume a basic energy substrate
- Execute a metabolic process that corresponds to a physiological function

Basic Ideas

- Metabolic enzymes and metabolite carrier proteins represent metabolic processes
- Metabolic processes can be connected by flows of metabolites
- Some combinations of connected metabolic processes constitute metabolic cycles that execute a specific metabolic process corresponding to a specific physiological function

Mathematical Formulation

Process Stoichiometry Matrix (P)

Metabolite Production Vector (m)

Procedure

Procedure

- There are many possible sets of processes that include the targeted process of interest
- Typically, sets of processes contain more metabolites (rows) than processes (columns) – existence of a solution is not guaranteed
- Even if there is a mathematical solution, that solution may not be physiologically meaningful (e.g., if it includes irreversible processes operating in the wrong direction)

Glutamate Trafficking in Synaptic Neurotransmission

- *in vivo* MRS carbon labeling experiments for estimating neurotransmitter trafficking depend on a priori specifications of metabolic pathways
- Metabolic pathways for neurotransmitter trafficking *in vivo* are not known a priori
- Neurotransmitter trafficking *in vivo* may be accomplished by multiple, functionally redundant pathways

Parts Lists

Reaction	PN	A
cLDH	\checkmark	\checkmark
cGS		\checkmark
cPAG	\checkmark	
cME		\checkmark
cGDH	\checkmark	\checkmark
cAAT	\checkmark	\checkmark
cALAT	\checkmark	\checkmark
cBCAT	\checkmark	\checkmark
cN	\checkmark	\checkmark
mPDH	\checkmark	\checkmark
mCS	\checkmark	\checkmark
mAH	\checkmark	\checkmark
mIDH	\checkmark	\checkmark
mOGDH	\checkmark	\checkmark
mSCS	\checkmark	\checkmark
mSDH	\checkmark	\checkmark
mFH	\checkmark	\checkmark
mMDH	\checkmark	\checkmark
mNDK		\checkmark
mAAT		

Transport	PN	A
pmGLUT(Gluc)	\checkmark	\checkmark
pmGLAST(Glu)		\checkmark
pmSNAT3(Gln)		\checkmark
pmSNAT1(Gln)	\checkmark	
pmSNAT1(Asp)	\checkmark	\checkmark
pmSNAT1(Ala)	\checkmark	\checkmark
pmSBAT1(BCAA)	\checkmark	\checkmark
pmMCT(BCKA)	\checkmark	\checkmark
pmMCT(Lac)	\checkmark	\checkmark
pmNaCT(OG)	\checkmark	\checkmark
pmNaCT(Mal)	\checkmark	\checkmark
pmNaCT(Cit)	\checkmark	\checkmark
pmKCNK	\checkmark	\checkmark
pmNHE	\checkmark	\checkmark
mmMCT(Pyr)	\checkmark	\checkmark
mmP _i C	\checkmark	\checkmark
mmAAC	\checkmark	\checkmark
mmOGC	\checkmark	\checkmark
mmCIC	\checkmark	\checkmark
mmAGC	\checkmark	\checkmark

Composite	PN	A
cG	\checkmark	\checkmark
MAS	\checkmark	\checkmark
ET1	\checkmark	\checkmark
ET2	\checkmark	\checkmark
mmATPase	\checkmark	\checkmark
cATPase	\checkmark	\checkmark
pmNaKATPase	\checkmark	
pmExoATPase	\checkmark	

Some Possibilities

Glu-(Gln/OG) Cycle

Glu-(Gln/Mal) Cycle

Glu-(Gln/Mal) Cycle

Glutamate-Aspartate Cycle

Glucose

Relative Process Rates Glu-(Gln/Mal) Cycle

Reaction	PN	A
cLDH	1/2	- ¹ / ₂
cGS	N/A	¹ / ₂
cPAG	1/2	N/A
cGDH	- ¹ / ₂	1/2
mPDH	1/2	0
mCS	1/2	0
mAH	1/2	0
mIDH	¹ / ₂	0
mOGDH	0	1/2
mSCS	0	¹ / ₂
mSDH	0	¹ / ₂
mFH	0	1/2
mMDH	¹ / ₂	0
mNDK	0	$1/_{2}$

Transport	PN	Α
pmGLUT(Gluc)	0	¹ / ₄
pmGLAST(Glu)	N/A	1
pmSNAT3(Gln)	N/A	¹ / ₂
pmSNAT1(Gln)	- ¹ / ₂	N/A
pmMCT(Lac)	- ¹ / ₂	¹ / ₂
pmNaCT(Mal)	- ¹ / ₂	¹ / ₂
pmKCNK	1	¹ / ₃
pmNHE	-1	1 ¹ / ₂
mmMCT(Pyr)	1/2	0
mmPiC	3 ³ / ₄	35/8
mmAAC	3 ³ / ₄	35/8
mmOGC	¹ / ₂	- ¹ / ₂

Composite	PN	A
cG	0	$^{1}/_{4}$
MAS	0	¹ / ₂
ET1	$1^{1/2}$	1
ET2	0	¹ / ₂
mmATPase	3 ³ / ₄	31/8
cATPase	$1^{1}/_{4}$	2 ²³ / ₂₄
pmNaKATPase	1/2	² / ₃
pmExoATPase	1	N/A

Relative Production Rates Glu-(Gln/Mal) Cycle

Molecule	PN	A	Net
xGlucose	0	- ¹ / ₄	- ¹ / ₄
dO ₂	- ³ / ₄	- ³ / ₄	-1 ¹ / ₂
dCO ₂	1	$^{1/}2$	$1^{1/2}$
dH ₂ O	1	$^{1/}2$	$1^{1/2}$
xLactate	- ¹ / ₂	$^{1/}2$	0
xMalate	- ¹ / ₂	¹ / ₂	0
xGlutamate	1	-1	0
xGlutamine	- ¹ / ₂	¹ / ₂	0
xH ⁺	- ¹ / ₂	1/2	0

Intended Applications

 Design and interpretation of carbon labeling experiments

in vivo MRS of brain energy metabolism and neurotransmitter trafficking

 Further systems-theoretical investigations of alternative cycles
Metabolic Control Analysis

OCE CHAM PITHE STANFOOD DAILY

and at suffard a