

Robust systems in control

15 March 2007 Gosau FEBSysBio2007

> 2nd FEBS Advanced Lecture Course on Systems Biology:

From Molecules to Life Gosau, Austria, EU, March 10-16, 2007

MANCHESTER

First part: methodology

- Systems Biology as methodology:
 - Precise definition of biological concepts
 - Qualitative biological understanding through quantification
 - Silicon cell/JWS
 - Generality: mathematical proof & thought experiments
 - A definition of robustness

2nd FEBS Advanced Lecture Course on Systems Biology:

Middle part: tutorial

Calculating robustness
Falsifying proposed constant robustness
Searching for new general principles
How to enhance robustness; a paradoxical principle

2nd FEBS Advanced Lecture Course on Systems Biology:

Third part: results

Biochemical networks are highly robust
Robustness is not conserved
.... is conserved
Robustness through fragility
Robustness and signal transduction
Robustness as disease

2nd FEBS Advanced Lecture Course on Systems Biology:

bt

To deal with Biological Systems.....

We should engage in Systems Biology

2nd FEBS Advanced Lecture Course on Systems Biology:

From Molecules to Life Gosau, Austria, EU, March 10-16, 2007

Moving targets

2nd FEBS Advanced Lecture Course on Systems Biology:

From Molecules to Life Gosau, Austria, EU, March 10-16, 2007

Moving targets

MANCHESTER

Most remaining diseases are Systems Biology (network) diseases

Cf. Adriano Henney

2nd FEBS Advanced Lecture Course on Systems Biology:

From Molecules to Life Gosau, Austria, EU, March 10-16, 2007

Moving targets

MANCHESTER

To cure the network One should deal with the network An enormous paradigm shift

Cf. Lee Hood

2nd FEBS Advanced Lecture Course on Systems Biology:

From Molecules to Life Gosau, Austria, EU, March 10-16, 2007

Moving targets

MANCHESTER

Health and disease

• Classical:

Disease is dysfunction

Novel:
Disease is failure to be robust,
(or failure to be fragile....)

2nd FEBS Advanced Lecture Course on Systems Biology:

Assets of Systems Biology

- It is non dogmatic (neither reductionist nor holist)
- It does not evade the complexity of the real world
 - (one should simplify as much as possible but not more; Einstein)
- It adds precision to biology and this may enable one to solve issues that could not be solved before

2nd FEBS Advanced Lecture Course on Systems Biology:

Example of non dogmatic and precise nature of Systems Biology

- Biochemistry/molecular biology:
 'the rate limiting step is the first irreversible step in the pathway'
- Systems Biology:

Control may be distributed:

$$C_1^J + C_2^J + C_3^J + C_4^J = 1$$

 \triangleright

2nd FEBS Advanced Lecture Course on Systems Biology:

The rate-limiting step

'Criteria' for limitation originally in use

- There is only one
- Irreversible step
- First step
- Most regulated step
- When deleted, flux stops
- When inhibited flux decreases
- I like (work on) the enzyme, therefore it must be

important

2nd FEBS Advanced Lecture Course on Systems Biology:

Problems arising

 More than one step was proposed to be the only rate-limiting step
 Criteria were muddy

MANCHES

2nd FEBS Advanced Lecture Course on Systems Biology:

A good definition

- Should enable us to figure out which of these definitions (if any) is right
 Should even enable us to find that there is
 - no rate-limiting step at all...

2nd FEBS Advanced Lecture Course on Systems Biology:

How to measure whether a component is limiting = controlling ??

How to measure whether an component is limiting: the Control coefficient

Disadvantage

$$slope = \frac{dJ}{de}$$

dJ: nmol/min/mgdryweightde: mg protein

 Control changes when expressed per gram protein

MANCHESTER

2nd FEBS Advanced Lecture Course on Systems Biology:

Relative changes

$$slope = \frac{dJ / J}{de / e}$$

dJ/J: dimensionless de/e: dimensionless

 Control changes when expressed per gram protein

2nd FEBS Advanced Lecture Course on Systems Biology:

bt

Qualitative conclusion

Control may be distributed

2nd FEBS Advanced Lecture Course on Systems Biology:

From Molecules to Life Gosau, Austria, EU, March 10-16, 2007

Moving targets

Asset of Systems Biology

Discover qualitative properties By being sufficiently more precise (quantitative)

> 2nd FEBS Advanced Lecture Course on Systems Biology:

From Molecules to Life Gosau, Austria, EU, March 10-16, 2007

Moving targets

MANCHEST

First part: methodology

- Systems Biology as methodology:
 - Precise definition of biological concepts
 - Qualitative biological understanding through quantification
 - Silicon cell/JWS
 - Generality: mathematical proof & thought experiments
 - A definition of robustness

2nd FEBS Advanced Lecture Course on Systems Biology:

Is control distributed?

We can now calculate this for some cases using the silicon cell

MANCHESTER

Advanced Lecture Course on stems Biology:

Molecules to Life ustria, EU, March 10-16, 2007

Linked to FEBS Journal and Microbiology

New! Our discussion forums are now live: try the Forum pages.

2002/12/03: The Applets have been upgraded to use the Sun Microsystems JRE 1.4 or higher

www.siliconcell.net

© Brett Olivier and Jacky Snoep, Stellenbosch University and Vrije Universiteit - Amsterdam, 2002 Site last updated: 03 December 2002

2nd FEBS Advanced Lecture Course on Systems Biology:

Silicon cell live models: http://www.jjj.bio.vu.nl

bt

In one case

Control is distributed (and in fact in many other cases)

2nd FEBS Advanced Lecture Course on Systems Biology:

From Molecules to Life Gosau, Austria, EU, March 10-16, 2007 **Moving targets**

MANCHESTER 1824

b

Silicon cell.....

As complex as reality 'Therefore not useful' (??)

2nd FEBS Advanced Lecture Course on Systems Biology:

From Molecules to Life Gosau, Austria, EU, March 10-16, 2007 **Moving targets**

Where did the 1 go?

		4 mM glucose		5 mM glucose		8 mM glucose	
	Reaction	\mathbf{C}_{i}^{J}	Γ/\mathbf{K}_{eq}	\mathbf{C}_{i}^{J}	Γ/\mathbf{K}_{eq}	\mathbf{C}_{i}^{J}	Γ/\mathbf{K}_{eq}
	Glucose transport					0.63	9.2.10-3
	нк	SE PE				0.04	<< 10 ⁻³
	PFK			1-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2		0.01	<< 10 ⁻³
-	XLD		Flux v	versus		0.10	0.17
	GAPDH		enzyn	ne/gene		0.09	0.20
	PGK		dosag	Je		0.06	3.4.10-3
	РҮК					0.01	<< 10 ⁻³
	Pyruvate transport	0.5		$C_i' = \left(\frac{d\ln J}{T}\right)$	$\frac{dJ}{J} = \frac{dJ}{J} = \frac{'\% dJ}{J}$	0.00	<< 10 ⁻³
	GDH	0			$\left(\begin{array}{c} e_{i} \\ e_{i} \end{array} \right)_{steadsyste} \left(\begin{array}{c} de_{i} \\ e_{i} \end{array} \right)^{2} \left(\begin{array}{c} e_{i} e_{i} \end{array} \right)^{2} \left(\left(\begin{array}{c} e_{i} \end{array} \right)^{2} \left(\left$	0.06	9.1.10-3
	GPO	0	0.5	1 1.5	2 2.5	0.01	<< 10 ⁻³
	ATP utilization					0.00	
						+	
						1.01	

The first **law** of Systems Biology: summation law for flux control

 $C_{1}^{J} + C_{2}^{J} + C_{3}^{J} + \dots + C_{n}^{J}$

Implication: steady-state flux control need not be in single step; can be distributed, but must sum to 1

MANCHES

2nd FEBS Advanced Lecture Course on Systems Biology:

MANCHESTER

bt

Moving targets

Silicon cell.....

Made a discovery

This is a true story: **Kacser & Burns and for other** theorems: Van Dam et al. Bruggeman et al.

Systems Biology

The Life of Biology The quantitative experimentation of biochemistry/biophysics The precision of physics The certainty/generality of mathematics

Cf. Guy Shinar

2nd FEBS Advanced Lecture Course on Systems Biology:

From Molecules to Life Gosau, Austria, EU, March 10-16, 2007

Moving targets

MANCHESTER

Ein Gedanken Experiment

A thought experiment

MANCHESTER 1824

Intuitive proof of the summation law

- C^J₁ = the percentage increase in steady state flux if one activates only enzyme 1, keeping all other parameters constant
- C^J₁+C^J₂= the percentage increase in steady state flux if one activates both enzyme 1 and enzyme 2 by 1 %, keeping all other parameters constant
- C^J₁+C^J₂+C^J₃+...+C^J_n=the percentage increase in steady state flux if one activates all enzymes by 1 %, keeping all other parameters constant = ????

2nd FEBS Advanced Lecture Course on Systems Biology:

$$\frac{dX}{dt} = v_1 - v_2 - v_3$$

$$\frac{dX}{dt} = 100 - 70 - 30 = 0$$

$$\frac{dX}{dt} = 110 - 77 - 33 = ?$$

$$\frac{dX}{dt} = 110 - 77 - 33 = ?$$

$$\frac{dX}{dt} = 100 - 77 - 33 = ?$$

$$\frac{dX}{dt} = 100 - 77 - 33 = ?$$

$$\frac{dX}{dt} = 100 - 77 - 33 = ?$$

$$\frac{dX}{dt} = 100 - 77 - 33 = ?$$

$$\frac{dx}{dt} = v_1 - v_2 - v_3$$

$$\frac{dx}{dt} = 100 - 70 - 30 = 0$$

$$\frac{dx}{dt} = 110 - 77 - 33 = 0$$

$$\frac{dx}{dt} = 110 - 77 - 33 = 0$$

$$\frac{dX}{dt} = v_1 - v_2 - v_3 \qquad Y - V_3$$

 $\frac{dX}{dt} = 100 - 70 - 30 = 0$

0

$$\frac{dX}{dt} = 110 - 77 - 33 = 0$$

Steady state is established immediately

No change in [X]

Same percentage change in fluxes

MANCHESTER

2nd FEBS Advanced Lecture Course on Systems Biology:

Laws of Systems Biology: summation law for flux control...and..

 $C_1^J + C_2^J + C_3^J + C_4^J = \frac{10\%}{10\%}$

MANCHEST

2nd FEBS Advanced Lecture Course on Systems Biology:

Laws of Systems Biology: Summation law for flux control...and.. concentration control

10% $C_1^J + C_2^J + C_3^J + C_4^J = \frac{1070}{1070}$ 10% 0% $C_1^X + C_2^X + C_3^X + C_4^X$ 2nd FEBS Advanced Lecture Course on Systems Biology:

From Molecules to Life

Laws of Systems Biology: summation law for flux control...and.. concentration control... and noise control

MANCHES

 $C_1^J + C_2^J + C_3^J + C_4^J = \frac{10\%}{10\%}$ 0% $C_1^{\sigma_x} + C_2^{\sigma_x} + C_3^{\sigma_x} + C_4^{\sigma_x} = \frac{0\%}{10\%}$ 2nd FEBS Advanced Lecture Course on Systems Biology:

From Molecules to Life

First part: methodology

- Systems Biology as methodology:
 - Precise definition of biological concepts
 - Qualitative biological understanding through quantification
 - Silicon cell/JWS
 - Generality: mathematical proof & thought experiments
 - A definition of robustness

Robust systems in control

MANCHESTER

15 March 2007 Gosau FEBSysBio2007

We need a definition of robustness/health

2nd FEBS Advanced Lecture Course on Systems Biology:

From Molecules to Life Gosau, Austria, EU, March 10-16, 2007 **Moving targets**

MANCHESTER

bt

Example: Robustness of the flux When enzyme activities are eliminated

2nd FEBS Advanced Lecture Course on Systems Biology:

Example: Robustness of the flux When enzyme activities are eliminated

When enzyme activities are perturbed

2nd FEBS Advanced Lecture Course on Systems Biology:

bt

Definition of robustness

In the tutorial

2nd FEBS Advanced Lecture Course on Systems Biology:

From Molecules to Life Gosau, Austria, EU, March 10-16, 2007

64

Coffee & tutorial time!

2nd FEBS Advanced Lecture Course on Systems Biology:

From Molecules to Life Gosau, Austria, EU, March 10-16, 2007

bt

Definition of robustness vis-a-vis a perturbation

How robust is a function with respect to a perturbation in a property?By what percentage can I perturb that function and change system function by only 1 %?

2nd FEBS Advanced Lecture Course on Systems Biology:

From Molecules to Life Gosau, Austria, EU, March 10-16, 200

First part: methodology

- Systems Biology as methodology:
 - Precise definition of biological concepts
 - Qualitative biological understanding through quantification
 - Silicon cell/JWS
 - Generality: mathematical proof & thought experiments
 - A definition of robustness

Robustness

- There is more than one definition:
 - John Doyle's/Kitano definition: frequency domain
 - Robustness vis-à-vis gene deletion
 - Guy Shinar: variation of concentration of protein form with total concentration of that protein
 - This one: steady state function with respect to parameters, such as catalytic activities

But cells and tissues may not be classical, e.g. they are networks

We can now calculate this for some cases using the silicon cell

Advanced Lecture Course on stems Biology:

Molecules to Life Istria, EU, March 10-16, 2007

T-L03-Toward the theory of biological robustness and its application to drug design

Hiroaki Kitano

Sony Computer Science Laboratories, Inc., The Systems Biology Institute, Department of Cancer Systems Biology, The Cancer Institute

Robustness is a ubiquitously observed property of biological systems. It is considered to be a fundamental feature of complex evolvable systems. It is attained by several underlying principles that are universal to both biological organisms and sophisticated engineering systems. Robustness facilitates evolvability and robust traits are often selected by evolution. Such a mutually beneficial process is made possible by specific architectural features observed in robust systems. But there are trade-offs between robustness, fragility, performance and resource demands, which explain system behaviour, including the patterns of failure. Insights into inherent properties of robust systems will provide us with a better understanding of complex diseases and a guiding principle for therapy design.

Many potential drugs that target causative disease genes have been found to be less effective than hoped, or to cause significant side-effects. The intrinsic robustness of living systems against various perturbations is a key factor that prevents such compounds from being successful. By studying complex network systems and reformulating control and communication theories that are well established in engineering, a solid theoretical foundation for a system to control the robustness of living systems, particularly at the cellular level, could be developed. Here, I use examples from drugs currently on the market to illustrate the concept of robustness and then discuss how greater consideration of the importance of robustness could influence the design of drugs that are ultimately intended to control complex systems.

Definition of robustness

By what percentage can I perturb a component process of the system and affect system function by only 1 %?

2nd FEBS Advanced Lecture Course on Systems Biology:

From Molecules to Life Gosau, Austria, EU, March 10-16, 2007

Moving targets

MANCHES

bt

Cells and tissues are systems

Let us see whether they tend to be more robust than processes in isolation

Advanced Lecture Course on stems Biology:

Molecules to Life Istria, EU, March 10-16, 2007

Silicon cell live models: jjj.bio.vu.nl

bt

Assignments

 Calculate robustnesses for silicon cell flux with respect to reactions
 Add them up
 Vary one of the activities
 Do the same
 Is total robustness constant?
 Take the inverses.
 Repeat

2nd FEBS Advanced Lecture Course on Systems Biology:

From Molecules to Life Bosau, Austria, EU, March 10-16, 2007

Middle part: tutorial

Calculating robustness
Falsifying proposed constant robustness
Searching for new theorems
How to enhance robustness; a paradoxical principle

MANCHES

2nd FEBS Advanced Lecture Course on Systems Biology:

Third part: results

Are biochemical networks robust?
Is robustness conserved ?
..... is conserved
Robustness through fragility
Robustness and signal transduction
Robustness as disease

2nd FEBS Advanced Lecture Course on Systems Biology:

MANCHESTER 1824

D

End of tutorial

2nd FEBS Advanced Lecture Course on Systems Biology:

From Molecules to Life Gosau, Austria, EU, March 10-16, 2007

Moving targets

T-L03-Toward the theory of biological robustness and its application to drug design

Hiroaki Kitano

Sony Computer Science Laboratories, Inc., The Systems Biology Institute, Department of Cancer Systems Biology, The Cancer Institute

Robustness is a ubiquitously observed property of biological systems. It is considered to be a fundamental feature of complex evolvable systems. It is attained by several underlying principles that are universal to both biological organisms and sophisticated engineering systems. Robustness facilitates evolvability and robust traits are often selected by evolution. Such a mutually beneficial process is made possible by specific architectural features observed in robust systems. But there are trade-offs between robustness, fragility, performance and resource demands, which explain system behaviour, including the patterns of failure. Insights into inherent properties of robust systems will provide us with a better understanding of complex diseases and a guiding principle for therapy design.

Many potential drugs that target causative disease genes have been found to be less effective than hoped, or to cause significant side-effects. The intrinsic robustness of living systems against various perturbations is a key factor that prevents such compounds from being successful. By studying complex network systems and reformulating control and communication theories that are well established in engineering, a solid theoretical foundation for a system to control the robustness of living systems, particularly at the cellular level, could be developed. Here, I use examples from drugs currently on the market to illustrate the concept of robustness and then discuss how greater consideration of the importance of robustness could influence the design of drugs that are ultimately intended to control complex systems.

Robustness of vital flux of Trypanosomes vis-à-vis perturbations of glycolytic steps

step	Rob	oustness	
Glctr		1.1	
GAPdh		42	
НК		42	
PGI		1546	
PFK		234	
ALD		38	
TPI		482	
GDH		66	
GPO		-251	
PGK		61	
РК		691	
ATPase		2744	
GlyK		389	
Sum	2 rd FEBS Advanced Lecture Course on Systems Biology: From Molecules to Life	6085	

Average robustness = 470 >>>1

470 fold in this case

2nd FEBS Advanced Lecture Course on Systems Biology:

From Molecules to Life Gosau, Austria, EU, March 10-16, 2007

Moving targets

MANCHESTER

 \mathbf{b}

Third part: results

Biochemical networks are highly robust
Is robustness conserved ?
..... is conserved
Robustness through fragility
Robustness and signal transduction
Robustness as disease

MANCH

2nd FEBS Advanced Lecture Course on Systems Biology:

Is robustness conserved?

Does total robustness remain constant when system is made more robust visà-vis perturbation of one of its steps?

> 2nd FEBS Advanced Lecture Course on Systems Biology:

From Molecules to Life Gosau, Austria, EU, March 10-16, 2007

Moving targets

MANCHESTEF

bt

Total robustness is not conserved

	Q	louble glucose					
step		transporter					
Glucose transport	1.1	87.8					
GAPdh	42	4					
НК	42	20					
PGI	1546	412					
PFK	234	56					
ALD	38	3					
TPI	482	64					
GDH	66	6					
GPO	-251	-15					
PGK	61	7					
РК	691	73					
ATPase	2744	313					
GlyK	389	26					
Sum	6085	1055					
	2 nd FEBS Advanced Lecture Course on Systems Biology:						
		Prove Malassian to 1 Ma					

64

Robustness is *not* constant

2nd FEBS Advanced Lecture Course on Systems Biology:

From Molecules to Life Gosau, Austria, EU, March 10-16, 2007

Moving targets

Third part: results

Biochemical networks are highly robust
Robustness is not conserved ?
..... is conserved
Robustness through fragility
Robustness and signal transduction
Robustness as disease

 \triangleright

2nd FEBS Advanced Lecture Course on Systems Biology:

bt

Robustness is not conserved

But fragility is

2nd FEBS Advanced Lecture Course on Systems Biology:

From Molecules to Life Gosau, Austria, EU, March 10-16, 2007

Moving targets

Sum over all fragilities=inverse robustnesses = 1

step	1/robustness	(doubled glc transporter)
Glucose		Carlana and
transport	0.887	0.011
GAPdh	0.024	0.249
НК	0.024	0.051
PGI	0.001	0.002
PFK	0.004	0.018
ALD	0.026	0.354
TPI	0.002	0.016
GDH	0.015	0.166
GPO	-0.004	-0.068
PGK	0.016	0.144
РК	0.001	0.014
ATPase	0	0.003
GlyK	0.003	0.039
Sum	Systems Biology: From Molecules to je 9999	0.999

1 /robustnoss

Definition of fragility

2nd FEBS Advanced Lecture Course on Systems Biology:

MANCHESTEF

2nd FEBS Advanced Lecture Course on Systems Biology:

Third part: results

Biochemical networks are highly robust
Robustness is not conserved ?
Fragility is conserved ?
Robustness through fragility
Robustness and signal transduction
Robustness as disease

2nd FEBS Advanced Lecture Course on Systems Biology:

Implications

 If the robustness vis-à-vis an already fragile step is decreased, average robustness may increase
 Sacrifice principle: robustness through fragility

2nd FEBS Advanced Lecture Course on Systems Biology:

By decreasing robustness vis-à-vis one step one can increase the total robustness

Robustness

		double glc
step	Robustness	transporter
Glctr	1.1	87.8
GAPdh	41.6	4
НК	42.4	19.7
PGI	1545.9	411.5
PFK	233.6	56.2
ALD	38.3	2.8
TPI	481.9	63.7
GDH	65.7	6
GPO	-250.7	-14.8
PGK	61	6.9
РК	691.3	72.6
ATPase	2743.5	313
GlyK	389.4	25.5
Sum	6085	1054.9
	2 nd FEBS Advanced Lecture Course	on

Perhaps this is why robust systems tend to have Achilles heels

which should be the better drug targets

2nd FEBS Advanced Lecture Course on Systems Biology:

From Molecules to Life Gosau, Austria, EU, March 10-16, 2007

Moving targets

MANCHEST

bt

Third part: results

Biochemical networks are highly robust
Robustness is not conserved ?
Fragility is conserved
Robustness through fragility
Robustness and signal transduction
Robustness as disease

2nd FEBS Advanced Lecture Course on Systems Biology:

Ri R $R \xrightarrow{1} Ri$ 2 Males versus the females x1p **3** fragile versus robust. x1p **x1** 5 **5** Kinases versus phosphatasesx2 x2p x2p **x**2 6 7 **x3** x3p **x3** 8

2nd FEBS Advanced Lecture Course on Systems Biology:

From Molecules to Life Gosau, Austria, EU, March 10-16, 2007

Moving targets

MANCHESTER

in single cells upon EGF stimulation

MANCHESTER

DM

Green: total ERK Red: ERK-PP

> 2nd FEBS Advanced Lecture Course on Systems Biology:

> From Molecules to Life Gosau, Austria, EU, March 10-16, 2007

Moving targets

Research questions

 To which perturbations are duration and amplitude robust (fragile)?
 Are these the same perturbations?

2nd FEBS Advanced Lecture Course on Systems Biology:

Robustness of ERK-PP vis-à-vis perturbation

MANCHESTER

Robustness of ERK-PP amplitude in model MAP kinase pathway: mostly robust

Section also			kinases			phosph	Sum				
a studie		1	2	3	1	2	3	R			
N ALTERNA	Ampli tude	6	4	2	-7	-5	-3	-6	-9	33	
										52	
1					2 nd FEBS Advai Syster From Mo Gosau, Austria	nced Lecture Course on ms Biology: lecules to Life h, EU, March 10-16, 2007					A

Duration robustness in model MAP kinase

			kinases			phosp	Sum			
A CHARMEN AND A		1	2	3	1	2	3	R		
A MANADAR	Ampli tude	6	4	2	-7	-5	-3	-6	-9	33
ALL RIVER	Durat ion	17	11	8	-2	-3	-3	-8	20	52
					2 nd FEBS Advan Syster From Mo Gosau, Austria,	iced Lecture Course on ns Biology: lecules to Life , EU, March 10-16, 2007				

Research questions

 To which perturbations is this signal transduction robust (fragile)? Most

• Are these the same perturbations? No

2nd FEBS Advanced Lecture Course on Systems Biology:

Robustness depends on function considered and is not conserved

Internation			kinases		phosphatases				Sum	
		1	2	3	1	2	3	R		
AN CONTRACTOR	Ampli tude	6	4	2	-7	-5	-3	-6	-9	33
ALL	Durat ion	17	11	8	-2	-3	-3	-8	20	52
	Z rd FEBS Advanced Lecture Course on Systems Biology: From Molecules to Life Gosau, Austria, EU, March 10-16, 2007									

Systems Biology principle: total amplitude fragility = conserved and zero

2nd FEBS Advanced Lecture Course on Systems Biology:

Research questions

To which perturbations is this signal transduction robust (fragile)? Most
Does robustness differ for the various aspects of the signal? Yes

Do you believe this?

2nd FEBS Advanced Lecture Course on Systems Biology:

MANCHESTER 1824

Systems Biology principles concerning robustness differ

$$\sum_{i=1}^{n} \frac{1}{\Re_{e_i}^{amplitude}} \equiv 0$$

$$\sum_{i=1}^{n} \frac{1}{\Re_{e_i}^{duration}} \equiv -1$$

2nd FEBS Advanced Lecture Course on Systems Biology:

Robustness depends on function considered

BIO) Centru

	kinases				phosph	Sum			
	1	2	3	1	2	3	R		
Ampli tude	6	4	2	-7	-5	-3	-6	-9	33
Durat ion	17	11	8	-2	-3	-3	-8	20	52

From Molecules to Life

Duration robust *vis-à-vis* kinase perturbation, fragile *vis-à-vis* phosphatase perturbation

			kinases			phosph	Sum			
Hard The Association		1	2	3	1	2	3	R		
	Ampli tude	6	4	2	-7	-5	-3	-6	-9	33
N. N. N. N.	Durat ion	17	11	8	-2	-3	-3	-8	20	52 🖂
,					2 nd FEBS Advan Systen From Mo Gosau, Austria	nced Lecture Course on ns Biology: lecules to Life , EU, March 10-16, 2007				

Amplitude is less robust vis-à-vis kinase perturbation than is duration

Third part: results

Biochemical networks are highly robust
Robustness is not conserved ?
Fragility is conserved
Robustness through fragility
Robustness and signal transduction
Robustness as disease

2nd FEBS Advanced Lecture Course on Systems Biology:

From Molecules to Life Gosau, Austria, EU, March 10-16, 20

MANCHESTER 1824

bt

Oncogenesis

Which type of step is amplified? Robust or fragile?

2nd FEBS Advanced Lecture Course on Systems Biology:

From Molecules to Life Gosau, Austria, EU, March 10-16, 2007

Moving targets

MANCHESTER 1824

Detailed kinetic model of signaling by EGF

MAP kinase signaling: which steps are robust?

-6

Mutations of the BRAF gene in human cancer

Centrum

write Universiteit

Helen Davies^{1,2}, Graham R. Bignell^{1,2}, Charles Cox^{1,2}, Philip Stephens^{1,2}, Sarah Edkins¹, Sheila Clegg¹, Jon Teague¹, Hayley Woffendin¹, Mathew J. Garnett³, William Bottomley¹, Neil Davis¹, Ed Dicks¹, Rebecca Ewing¹, Yvonne Floyd¹, Kristian Gray¹, Sarah Hall¹, Rachel Hawes¹, Jaime Hughes¹, Vivian Kosmidou¹, Andrew Menzies¹, Catherine Mould¹, Adrian Parker¹, Claire Stevens¹, Stephen Watt¹, Steven Hooper³, Rebecca Wilson³, Hiran Jayatilake⁴, Barry A. Gusterson⁵, Colin Cooper⁶, Janet Shipley⁶, Darren Hargrave⁷, Katherine Pritchard-Jones7, Norman Maitland8, Georgia Chenevix-Trench9, Gregory J. Riggins¹⁰, Darell D. Bigner¹⁰, Giuseppe Palmieri¹¹, Antonio Cossu¹², Adrienne Flanagan¹³, Andrew Nicholson¹⁴ Judy W. C. Ho¹⁵, Suet Y. Leung¹⁶, Siu T. Yuen¹⁶, Barbara L. Weber¹⁷, Hilliard F. Seigler¹⁸, Timothy L. Darrow¹⁸, Hugh Paterson³, Richard Marais³, Christopher J. Marshall³, Richard Wooster^{1,6}, Michael R. Stratton^{1,4} & P. Andrew Futreal¹

> 2nd FEBS Advanc System From Mol Gosau, Austria.

MANCHESTER

Oncogenes may affect fragile steps

and make the cells more robust:

robustness as disease

2nd FEBS Advanced Lecture Course on Systems Biology:

From Molecules to Life Gosau, Austria, EU, March 10-16, 2007

Moving targets

MANCHESTER

bd

MANCHESTER 1824

bt

Drug designers do not like moving targets

2nd FEBS Advanced Lecture Course on Systems Biology:

From Molecules to Life Gosau, Austria, EU, March 10-16, 2007

Moving targets

Systems Biology: From Molecules to Life

From Molecules to Life Gosau, Austria, EU, March 10-16, 2007 Moving targets

MANCHESTER

bt

That should be the drug target

2nd FEBS Advanced Lecture Course on Systems Biology:

From Molecules to Life Gosau, Austria, EU, March 10-16, 2007

Moving targets

MANCHESTER

bt

Step 2 has become more fragile

Ves: 3 less fragile; 2 more fragile

Hence: tumor cell less sensitive to inhibitor of amplified step: Not step 3 but step 2 is the preferred target!!

Systems Biology:

From Molecules to Life Gosau, Austria, EU, March 10-16, 2007

Moving targets

MANCHESTER

10 x

 $\xrightarrow{1}$ Ri

x1p

5

x2p

7

8

x3p

60

R -

 $\mathbf{x}\mathbf{2}$

6

x3

x1

EBS Advan

Barbara Bakker Frank Bruggeman Jacky L. Snoep

and many others

and mon

01

MANCHESTER