Can we define the basic building
blocks of networks?

Generalize the notion of MOTIFS, widely used in sequence
analysis, to the level of networks.

Sequence motif: a sequence that appears much more frequently
than in randomized sequences.

‘Network motif’: a pattern that appear much more frequently
than in randomized networks.

Complex networks are found throughout
biology

Algorithm that finds n-node network motifs

Find all n-node circuits in real graph Examples of 3-node circuits
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And in a set of randomized graphs with the same distribution

of incoming and outgoing arrows.
Assign P-value probability of occurring more at random than

4in the real graph

Randomization: Newman, 2000, Sneppen& Malsov 2002

Database of direct transcription interactions in
E. coli

Transcription factors Directed graph
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424 nodes, 519 interactions
Based on selected data from RegulonDB + 100 interactions from literature search
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feedforward loop

crp

araC

araBAD

The thirteen 3-node connected subgraphs

e e
S




Only two of the 8 types of feed-forward loops are significant
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Mangan, Alon 2003
8 Ma, Zheng et al 2005

There are 8 types of FFL regulation sign combinations
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The feed-forward loop is a filter for
transient signals allowing fast shutdown
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Mangan, PNAS, JMB, 2003

Dynamics of the feed-forward loop system

X(t) = time varying input

dY/dt=FX)-aY
dZ/dt=FX)F(Y)-bZ

Mangan, PNAS, JMB, 2003

9 Threshold

Construct strains, each reporting for a different promoter

Plasmid with promoter for gene X
controlling a reporter

==
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Gene X intact on chromosome

High throughput cloning:
Promoter PCR, restriction, ligation, preps all in 96-
well format.
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GFP Reporter plasmid system for promoter activity

o
o
Gg,
Xhol BamH| n%
[
& PpUA66
SC101




Activity of 96 promoters across 20 h growth in 20 conditions

7 min resolution

500 700

minimal + aa e minimal - aa arabinose 0.5mM

Construct strains, each reporting for a different promoter

Grow strains under same conditions and
measure reporter fluorescence or luminescence

Each well reports
for a different
promoter

Commercial fluorimeter/luminometer
shakes, temperature control, imjectors.
13 Measure at the same time cell optical density.

Maximal response to a pulse of X is filtered by FFL

Input pulse to X of duration T I T |
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Day-day reproducibility of better than 10%
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Feedforward loop is a sign-sensitive filter
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Sign-sensitive filtering by arabinose feed-forward loop
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The single-input module can generate a temporal
program of gene expression

23 threshold
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single input module (SIM)
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Shen-Orr, Milo, Mangan, Alon Nature genetics 2002

Temporal order matches position of proteins
along the flagella motor
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Flagella operons are activated in temporal order
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Temporal order matches enzyme position in the pathway
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Temporal order in Arginine biosynthesis system
with minutes between genes
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4-node motifs in E. coli network: overlapping regulation
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Overlapping regulation Generalization of

Feedforward loop

to two output genes
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199 4-node directed connected subgraphs
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Mapping Logic gates using GFP
reporter arrays (Lacz)
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dense overlapping regulons (DOR)
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Can we draw complex networks in an understandable way?

29




Incoherent FFL is a pulse generator

E. coli and yeast transcriptional networks show the same motifs

X X
1 l Feed-forward loop: yeast 74,
Y x Y  over 10 STDs from random networks!
1 0.5} l Same two FFL types,
zZ o ‘ ‘ ‘ ‘ ‘ | Z  coherent and incoherent type 1
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02 \ regulation in a eukaryote and a prokaryote
. ‘ ‘ ‘ ‘ Milo et al 2002, Lee at al 2002
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Feed-forward loops drive temporal pattern
of pulses of expression
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Developmental transcription network made of
feed-forward loops: B. subtilis sporulation
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R. Losick et al. , PLOS 2004
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Negative feedback in engineering
uses fast control on slow devices.

Power
supply

o [Temperature]

a

Thermostat

fast

Engineers tune the feedback parameters to obtain rapid
and stable temperature control

Negative feedback loop with one
transcription arm and one protein
arm is a common network motif
across organisms
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Negative Feedback can show over-damping, damped
or un-damped oscillations, depending on parameters

Time
38 Engineers usually prefer damped oscillations-

fast response, not too much overshoot

Negative Feedback can show over-damping, damped
or un-damped oscillations, depending on parameters
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real-time proteomics in single
living cells for p53-mdm2 dynamics
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d P53-CFF D
p53-CFP and Mdm2-YFP fusion protein allow imaging of p53 and
MDM?2 protein in living cells 6. Lahav

Negative Feedback can show over-damping, damped
or un-damped oscillations, depending on parameters

Enéineers usually try to avoid parameters that give Undamped oscillations

Food webs represent predatory
interactions between species

ecological
food web

Skipwith pond (25 nodes), primarily invertebrates
Little Rock Lake (92 nodes), pelagic and benthic species
Bridge Brook Lake (25 nodes), pelagic lake species
Chesapeake Bay (31 nodes), emphasizing larger fishes
Ythan Estuary (78 nodes) birds, fishes, invertebrates

42 Coachella Valley (29 nodes), diverse desert taxa

St. Martin Island (42 nodes), lizards Source: Williams & Martinez, 2000

COMBIO 2005
P53 dynamics in living cells

Experiments and modelling

Uri Alon
Weizmann Institute
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Links between WWW Pages — a
completely different set of motifs is found

X
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Links are directed edges with two
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Foodwebs have
“consensus motifs”
Three
* Consensus motifs — chain

different from
transcription networks
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Map of synaptic connections between C. elegans neurons

= White, Brenner, 1986

Full reverse engineering of electronic
circuit from transistor to module level

Each node represents a transistor —
Transistor 5 .
i E“l _

o0 level

Each node represents a transistor motif:
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Each node represents a gate motif:
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Each node represents a gate-flipflop motif:

counter Counter
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Itzkovitz 2004

Networks can be grouped to super-families
based on the significance profile
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Feedforward loops in C. elegans avoidance reflex circuit

Nose touch Noxious chemicals, nose touch
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Sensory neurons
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Thomas & Lockery 1999
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Summary —network motifs

Network motifs, significant patterns
in networks

Three motifs in transcription networks
and their functions

High-accuracy promoter activity measurements
from living cells
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