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Computational Systems Biology. 
Applications in pharmaceutical 
industry 

Igor Goryanin, Gosau, March, 2005

1st FEBS Advanced Lecture Course Agenda
The modelling process
Continuation procedure and 
bifurcation analysis
Multiple target intervention 
analysis for M. tuberculosis
The Pathway Editor

Computational systems biology in 
Edinburgh

Computational systems biology

Arthur C Clarke
“Any sufficiently advanced 
technology is indistinguishable from 
magic”
Is Computational Systems 
Biology/Modelling

An “Esoteric knowledge” ?
The way to understand biological 

systems?
Or a tool to solve practical problems?

Network
Reconstruction

Genome
Annotation

Organism

Metabolic
Biochemistry

Microbial
Model

Cell
Physiology

Quantitative
Analytical
Methods

Modeling techniques

Cell and molecular biology

New
Independent
Experimental
Information

Covert et al., Trends Biochem Sci. 2001 

Only connectivity (topology) of the interactions
Visualised as connection or interaction graph
Types

Metabolic (Metabolomics, metabonomics)
Genetic Regulation (Microarrays)
Protein-Protein Interactions (Proteomics)
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Quantitative Kinetic Models

Kinetic models - time dependency incorporated
Kinetic behaviour (rate laws) added to static model

Kinetic constants by fitting to experimental data
Mathematical model

Time variation of all concentrations and fluxes can be simulated
Model analyses possible: sensitivity, linear stability, bifurcation, 
and asymptotic analysis

Receptor
Inhibitor

Ligand

Static model

Numerical Simulation

Kinetic Model
R + L ⇔ R⋅ L
R + I ⇔ R⋅ I

R[ ]′ = −k1 R[ ] L[ ]+ k2 RL[ ]− k3 R[ ] I[ ]+ k4 RI[ ]
RL[ ]′ = k1 R[ ] L[ ]−k2 RL[ ]
RI[ ]′ = k3 R[ ] I[ ]− k4 RI[ ]
L[ ]′ = −k1 R[ ] L[ ]+ k2 RL[ ]
I[ ]′ = −k3 R[ ] I[ ]+ k4 RI[ ]

L0 = L[ ]+ RL[ ]
I0 = I[ ]+ RI[ ]
R0 = R[ ]+ RL[ ]+ RI[ ]

Mathematical Model

Bioinformatics, 1999, Vol 15, 749-758,
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The modelling process
Defining the biological scope for the model
Creating the model

Static model development
Entities and Interactions between them
Data acquisition, mining, curation,  and storage 

Semi-Quantitative model development
Collection of all available data about kinetics  and 
time dependencies.

Kinetic model development 
Fitting experimental data  to determine kinetic 
parameters

Model validation
Examining  to see if model makes ‘plausible’ predictions

Simulation, visualisation, analysis, and biological 
interpretations

Examine results looking for new biology
Planning of future experiments

To enhance model and verify predictions
To replace some in vivo and in vitro experiments

Some general information

Dynamical system

x(t): vector of time- dependent state variables
α: vector of parameters

Ordinary differential equation (ODE) with 
parameters

),(' αxfx
dt
dx

=≡

Numerical continuation of equilibria 

Equilibrium solution:                                   
, i.e. 

Jacobian matrix

is stable if all nearby orbits converge to 
If all eigenvalues of              have negative 

real part.

0)( xtx ≡ 0),( 0 =αxf
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Numerical continuation of equilibria 

Stable equilibria can be found by  
integration

Unstable equilibria 
Can be computed by numerical 
continuation

Numerical continuation Numerical continuation of equilbria
In generic one parameter problems, 
eigenvalues on the imaginary axis 
appear in two ways:

Simple zero eigenvalue
Corresponds to a fold (LP) bifurcation

Conjugate pair of simple pure 
imaginary eigenvalues

Corresponds to a Hopf (H) bifurcation
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Parameter continuation. Bifurcations Numerical continuation

Allows to compute branches of objects, e.g. 
branches of equilibria, if a parameter varies.
Allows to detect bifurcation points and 
analyze them.
Allows to start new branches and branches 
of new objects, switch parameters etc.
Allows to continue bifurcation points if a 
second parameter is freed.
Software

Matcont (Matlab)
Auto (general package)
DBsolve 7 (As a Systems Biology workbench)

TB statistics

There are 40 million cases 
of TB each year, 

i.e. 20,000 new cases of 
active TB every day

About one third of the 
human population –

roughly 2 billion people - are 
infected with TB, often in a 
latent form

2 million people die each 
year from TB,

i.e. between 5,000 and 6,000 
people a day .

Target analysis for M. tuberculosis

Pulmonary tuberculosis is a chronic infection of the lungs, 
leading in many cases to progressive tissue destruction and 
death.  
The causative organism is Mycobacterium tuberculosis.  The 
initial stages of infection are thought to involve invasion, 
followed by release of large numbers of extra-cellular 
bacteria and tissue destruction. Reactivation of the disease 
is often many years after the initial TB infection. 
Current regimens for the treatment of pulmonary TB 
involve extended therapy with multiple antibiotics 
Despite this, multiply drug resistant strains (MDR-TB) are 
increasingly common.  New agents are required which are 
active against MDR-TB 
The greatest improvements to current therapy and 
commercial attractiveness would be realized by drugs which 
are active against persisting organisms

The glyoxylate pathway

The glyoxylate pathway (also called the glyoxylate bypass 
or shunt) comprises the activities of isocitrate lyase (ICL) 
and malate synthase (MS).  
It acts as an alternative route for isocitrate metabolism in 
the tricarboxylic acid (TCA) cycle, bypassing the steps in 
which two molecules of carbon are lost as CO2.  
This enables organisms possessing this pathway to utilize 
acetyl-coA as the only input into the TCA cycle and hence 
permits growth on fatty acids and lipids, which are 
degraded to acetyl-coA by beta-oxidation.  
The glyoxylate pathway is present in bacteria and plants 
but has not been demonstrated in higher mammals. 
Gene disruption of icl in M. tuberculosis results in a strain, 
which is unable to cause a persistent, chronic infection

ICL MS
Glyoxylate

Why to model glyoxylate pathway?

ICL genes have been shown to be up-regulated, 
suggesting that ICL activity may be part of a wider 
strategy for intracellular survival by pathogenic 
microorganisms.
Both enzymes ICL and MS could be potential targets 
for chemotherapeutic agents aimed at persisting 
organisms. 
Small molecule inhibitors with adequate 
pharmacokinetics are required to fully validate this 
hypothesis and there may be broader spectrum 
applications for such novel inhibitors.  
It would be advantageous to construct a 
mathematical model of the glyoxylate pathway.  The 
analysis of simultaneous in silico inhibitions could be 
used to assess potential targets for drug 
intervention. ICL MS

Glyoxylate
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. A There are 3 steady states: “stable 1” (physiological stable 
steady state),  “unstable” (nonphysiological steady state) 
“stable 0” (non physiological zero stable state). B Inhibition 
of ICL by 15% results in loss of stability of physiological 
“stable 1” steady state.  and 35% C Inhibition of ICL by 35% 
results in disappearance

A

B

Simplified kinetic model of (branched) TCA cycle (Scheme) operating 
under anaerobic (or micro aerobic) conditions.. dependence of 
glyoxylate (GlOx) consumption (v3) and glyoxylate production (v2) 
rates on GlOx concentration at different activities of isocitrate
dehydrogenase (IDH, process 5), isocitrate lyase (ICL, process 2), 
malate synthase (MS, process 3).

5 (IDH 1.1.1.42)8

Inhibition effect. 
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(Fig. D) The same type of behavior, i.e. loss of stability of physiological steady state and its 
disappearance, can be resulted from overexpression of MS by 300%). 
(Fig. F) However, physiological steady state can be restored if we inhibited IDH by 50%

A

D

F
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Simultaneous ICL/MS inhibition.

The pathway has non-linear 
response.
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Model of glyoxylate shunt was constructed to assess advantage of simultaneous 
isocitrtae lyase (ICL) and malate synthase (MS) inhibition as a potential drug 
targets for TB
The analysis shows that intuition does not work.  The glyoxylate pathway is not 
linear, but has non-linear response.
Effective inhibition is  in the range of >50%ICL and >70%MS, otherwise the 
pathway will be still in physiological state

The pathway normal functioning  after ICL inhibition (~30%) could be 
restored by simultaneous MS inhibition(50%)

Cellular modelling. Hypothesis testing.
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Traditional linear 
understanding

No intuitive complex 
behaviour
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E.coli based with TB add-ons
1)  Mal and Suc to ICL (V2) 
2) GlOx and  OA  IDH (V5) 
E.coli. 
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Flux_through_ICL (v2)

Switch of fluxes between TCA and glyoxylate pathways under condition of simultaneous 
decrease in glucose influx and increase in fatty acid influx. IDH activation included

+

TB probably  has an 
enzyme analogous to 
the IDH  kinase/ 
phosphotase in E.coli

Target identification. Success?

TB metabolic model was created
two whole cell models E.coli and TB were compared.

Analysis
switch of fluxes between TCA and glyoxylate pathways 

under condition of simultaneous decrease in glucose 
influx and increase in fatty acid influx is provided by 
Isocitrate Dehydrogenase (IDH) kinase/phosphotase in 
E.coli.

Prediction
TB has an enzyme analogous to the IDH kinase/ 
phosphotase in E.coli. 
This enzyme could be potential drug target, as well as 
current targets: isocitrate lyase and malate synthase

"Applications of whole cell and large pathway mathematical models in the pharmaceutical industry" 
Metabolic Engineering in the  Post-Genomic Era, Editors B. Kholodenko and H. Westerhoff, Horizon 
Bioscience, UK, 2003
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Why modelling?
Knowledge management. Build a high resolution 
understanding.

integrate and explain data even large scale 
quantitative study of biological processes as whole 
systems 
identify  knowledge gaps

Hypothesis generation.
design cell for bioengineering problems
predict the cellular functions

different therapeutic, environmental, physiological 
and genetic conditions.

predict intervention consequences 

Hypothesis testing
provide cheaper and faster methods  complementary to 
in vitro, ex vivo and in vivo experiments or animal 
models

Rational Design
pathways, cells, biomarkers, organisms

The Pathway Editor

Visual annotation of metabolic, genetic regulatory, signal 
transduction and other intracellular networks.
Visual annotation of multicellular, tissue and organism level 
networks for disease knowledge reconstruction and modelling.

a convenient way to represent networks visually and 
populate them in a consistent way

checking biological names 
kinetic information
generic/specific relationship
data quality and confidence
arbitrary object’s

easy data exchange
pathways stored locally 
pathways stored in database
for enterprise sharing and merging

export/import pathways
pathways and model databases
picture formats, including WEB compatible

Editable maps Edinburgh Centre for Bioinformatics

The University of Edinburgh. College of Science & Engineering 
The University of Edinburgh. College of Medicine 

MRC Human Genetics Unit 
Roslin Institute 

Heriot-Watt University 
National e-Science Centre

In collaboration with Scottish Bioinformatics Research Network (SBRN)

More then 75 scientists from

Computational Systems Biology. Edinburgh

Systems Biology modelling support 
collaborative projects with academia, pharma and  

other industries 
Systems Biology computational infrastructure

in collaboration with industry (IBM BlueGene, etc)
Systems Biology knowledge base

software, methods, and algorithms
databases on pathways, cellular networks, models

Systems Biology teaching 
MSc course, PhD programme, seminar series

Picture of Edinburgh

Acknowledgements

GlaxoSmithKline
Discovery Research,
Research & Development  IT

Moscow State University, Russia
Dr Oleg Demin, group

EMP project, US


