1st FEBS Advanced Lecture Course

Computational Systems Biology. Applications in pharmaceutical industry

Igor Goryanin, Gosau, March, 2005





- The modelling process
- Continuation procedure and bifurcation analysis
- Multiple target intervention analysis for *M. tuberculosis*
- The Pathway Editor
- Computational systems biology in Edinburgh









## The modelling process

## Defining the biological scope for the model

- Creating the model
  - Static model development
    - Entities and Interactions between them
  - Data acquisition, mining, curation, and storage
     Semi-Quantitative model development
    - Collection of all available data about kinetics and time dependencies.
  - Kinetic model development
     Fitting experimental data to determine kinetic parameters
     A determine kinetic
- Model validation
   Examining to see if model makes 'plausible' predictions
   Simulation, visualisation, analysis, and biological interpretations
- Examine results looking for new biology Planning of future experiments
  - Planning of future experiments
  - To enhance model and verify predictions
     To replace some *in vivo* and *in vitro* experiments

## Some general information

Dynamical system

$$\frac{dx}{dt} \equiv x' = f(x,\alpha)$$

x(t): vector of time- dependent state variables
 α: vector of parameters

Ordinary differential equation (ODE) with parameters











## Numerical continuation

Allows to compute branches of objects, e.g. branches of equilibria, if a parameter varies.
 Allows to detect bifurcation points and analyze them.
 Allows to start new branches and branches of new objects, switch parameters etc.
 Allows to continue bifurcation points if a second parameter is freed.
 Software

 Matcont (Matlab)
 Auto (general package)
 DBsolve 7 (As a Systems Biology workbench)































