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Wnt-signaling and cancer

~85%of all sporadic and hereditary 
colorectal cancers show loss of APC 
function (mutation cluster region, MCR, 
codons ~1250-1500)

STRUCTURE DYNAMICS

DESIGN

BIOLOGICAL 
FUNCTION

PHYSICAL 
CONSTRAINTS

Evolution

optimizations

simulations

∑
=

=
r

1j
jij

i vn
dt

dS
vN

dt
Sd

⋅=

( )Tr1,...,vvv = ( )pS,vv =

DYNAMICS  AND  CONTROL

reaction rates

stoichiometric coefficients
metabolite 
concentrations

10-100 differential equations

S1 S2

v1 v2 v3

21
1 vv

dt
Sd

−=

32
2 vv

dt
Sd

−=



3

∑
=

=
r

1j
jij

i vn
dt

dS
vN

dt
Sd

⋅=

( )Tr1,...,vvv = ( )pS,vv =

reaction rates

stoichiometric coefficients
metabolite 
concentrations

S1 S2

v1 v2 v3

21
1 vv

dt
Sd

−=

32
2 vv

dt
Sd

−=

high number of 
variables

nonlinearity regulatory loops

separation of 
time constants

kinetic parameters 
often unknown

TIME DEPENDICIES OF 
GLYCOLYTIC METABOLITES

ATP

3PG

Pyr
2.3P2G

~0.5 h

~10 h

ATP

3PG

Pyr
2.3P2G

separation of time scales
quasi-steady states

conservation quantities

1.3P2G+ 2.3P2G+3PG+2PG+PEP+Pyr+NADH=const

AMP+ADP+ATP=const

~0.5 h

~10 h

MODEL REDUCTION

TIME DEPENDICIES OF 
GLYCOLYTIC METABOLITES

ATP

3PG

Pyr
2.3P2G

separation of time scales
(time hierarchy) quasi-steady states

~0.5 h

~10 h

MODEL REDUCTION

systems dynamics in a subspace of 
lower dimension

linear constraints

constVU...BA =++++

nonlinear constraints

const
YX
BA

=
⋅
⋅

REDUCING 
COMPLEXITY

A

B

X

Y

conservation quantities

1.3P2G+ 2.3P2G+3PG+2PG+PEP+Pyr+NADH=const

AMP+ADP+ATP=const

IDENTIFICATION OF KEY STEPS

G
LY

C
O

LY
SI

S

HK

PFK

ATPases

340   .=J
HKC

180.=J
PFKC

480.=J
ATPaseC

∑
=

=
r

k

J
kC

1
1 ∑

=

=
r

k

S
kC

1
0

ii

J
i vdv

JdJC =

REDUCING 
COMPLEXITY

J.J.Hornberg et al. FEBS Journal, (2005)

RTK

RAS

RAF

MEK

ERK

EGF SIGNAL  TRANSDUCTION  PATHWAYS

Effect of kinases

Effect of  phosphatases



4

0 2 4 6 8 10 12 14

0.1

0.2

0.3

0.4

τ+ϑ τ−ϑ

τ

S

dttXI )(
0
∫
∞

= dttXt
I

)(1

0
∫
∞

⋅=τ

( ) dttXt
I

)(1

0

22 ∫
∞

⋅−= τϑ

ϑ⋅
=

2
IS

signaling time

signal duration

signaling amplitude

S
ig

na
l, 

X

time

Integrated response

Metabolism Fluxes, concentrations

Signal transduction Amplitudes, duration of signals

METRIC FOR 
SIGNALING 
PROCESSES

Molec.Cell, 2002

iiiii
i XXX

dt
dX βα −⋅= −

~
1*

ii
i

i
ii

i X
K
XX

dt
dX βα −








−= − 11

kinase1 kinase1~P(X1)β1

α1

λ
receptor (R)

β2

βn

α2

αn

cellular response

kinase2~P(X2)kinase2

kinasen kinasen~P(Xn)

upstream kinase
active form

downstream kinase
inactive form

downstream kinase
active form

MATHEMATICAL DESCRIPTION

ii KX << : weakly activated pathway

iii KXX =+
~

iiii
i XX

dt
dX βα −= −1

∑
=

+=
n

i i
R

1

1
β

ττ

Signaling time and signal duration completely independent of kinases 

THESE AND OTHER RESULTS: PHOSPHATASES  CAN 
BE  MORE  IMPORTANT  FOR  REGULATION  THAN 
KINASES

WEAKLY ACTIVATED PATHWAYS
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DESIGN  OF  KINASE  NETWORKS

Binder & Heinrich 
(2004) Genome 
Informatics.Vol. 15

DYNAMICS OF LARGE SCALE SIGNALING NETWORKS

DESIGN OF CELLULAR 
NETWORKS

S1 S2

Occurrence of one reaction 
depends generally on the 
occurrence of other reactions 

MAIN FEATURE OF ANY 
METABOLIC NETWORK 
NETWORK:

First three generations of an expanding 
network

STARTING POINT:  set of 
initial compounds (seed) plus 
set of possible reactions

LARGE  SCALE  ANALYSIS

KEGG Database:  5311 
reactions, 4587 compounds

STRUCTURAL ANALYSIS OF METABOLISM BY 
“NETWORK EXPANSION“
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number of reactions

number of compounds

EXPANSION  OF  ATP

1571 compounds

Handorf, Ebenhöh, Heinrich, 2004

The scope of a compound A is the set of all compounds that 
can be reached by an expansion starting from A

Scope ΣA of compounds
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Scopes sizes of all metabolic compounds
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Seed compound: ATP
T. Handorf, O.Ebenhöh, R. Heinrich 
A.  (2004), Genome Informatics 
Series, Vol. 15

KEGG-Database: 5161 reactions and 4450 compounds

number of reactions

number of compounds

Seed compound: ATP
T. Handorf, O.Ebenhöh, R. Heinrich 
A.  (2004), Genome Informatics 
Series, Vol. 15

KEGG-Database: 5161 reactions and 4450 compounds
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scope size of ATP in 180 different species
Two posters on network expansion:

P-P12: Scopes: A new concept for the structural analysis 
of metabolic networks

(T.Handorf, O.Ebenhöh, R. Heinrich)

P-P09: Phylogenetic analysis based on structural 
information of metbolic networks

(O.Ebenhöh, T. Handorf, R. Heinrich) 
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