The Silicon Cell approach to building detailed kinetic models of biological systems

Jacky L. Snoep and Hans V. Westerhoff

Triple-J group, dep of Biochemistry, University of Stellenbosch, South Africa Molecular Cell Physiology, Vrije Universiteit Amsterdam, The Netherlands

The Silicon Cell (SiC)

A silicon cell model is a computer replica of (part of) a living cell. It is based on experimentally determined rate laws and parameter values.

aim: To understand systems behavior as a function of its components characteristics

http://www.siliconcell.net

Will it ever work?

Chances of success improve dramatically by trying

A kinetic model of Yeast glycolysis

Can yeast glycolysis be understood in terms of *in vitro* kinetics of the constituent enzymes? Testing biochemistry

Bas Teusink^{1,+}, Jutt Passarge²⁺t, Corinne A. Reijenga³, Eugenia Esgalhado³, Coen C. van der Weijden², Mike Schepper¹, Michael C. Walsh¹-2, Barbara M. Bakker², Karel van Dam¹, Hans V. Westerhoff^{1,2} and Jacky L. Snoep²

¹E.C. Slater Institute, BioCentrum Amsterdam, University of Amsterdam, the Netherlands; ²Department of Molecular Cell Physiolog BioCentrum Amsterdam, Escultr of Biology, Vrije Universityli, Amsterdam, the Netherlands

Yeast glycolysis, structure Linear pathway, one independent flux, twelve independent variables, three conserved moieties. Reactions, i.e. substrates and products of the different steps, are well known.

Differential equations of all variables can be set up as a function of the individual rate equations:

d(GAP[t])/dt = vALD + vTPI - vGAPdh

Rate equations

Enzymology is a well established discipline!

If known take enzyme kinetic mechanism from literature. Measure for specific strain and conditions the kinetic parameters.

Example: PFK

Monod, Wymann, Changeux model

Building the model

- Kinetic types are taken from literature.
- Kinetic parameters are fitted using the experimental in vitro data.
- Enzyme concentrations are determined in cell extracts

With this structure the kinetic model does not reach a steady state.

Let's compare to experimental data.

Flux	Experiment	Model
mmol min ⁻¹ L ⁻¹ cyt	•	
Glucose uptake	108	88
Ethanol efflux	135	129
Concentration		
mmol L ¹ cyt		
G6P	2.45	1.07
F6P	0.62	0.11
F16bP	5.51	0.60
DHAP	0.81	0.74
3PGA	0.90	0.36
2PGA	0.12	0.04
PEP	0.07	0.07
Pvr	1.85	8.52
ATP	2.52	2.51
ADP	1.32	1.29
AMP	0.25	0.30
NAD	1.20	1.55
NADH	0.39	0.04

Bifurcation in detailed

glycolytic model

2

Lower GLT activity

Building the Silicon Cell; a modular approach

- · SiC replicas of modules in metabolism
- Link modules to build the Silicon Cell

validation parameters context independent, mechanistic

modules should be defined on the basis of validation criteria; separation, structural, time, flux, ..

Combining models

Important that the parameter values are context independent.

G6P

Not SiC:

Fit a parameter set of an incomplete model to a systemic data set.

If glycerol branch would be added to the core model, all parameter values would have to be fitted again Parameter values have no mechanistic meaning

SiC:

parameters have real meaning, value independent of model in which they are used

Adding detail to the glycerol branch

APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Sept. 2002, p. 4448–4456 0099-224002300.00+0 DOI: 10.1128/AEMA8.9.4448–4456.2002 Copyright © 2002, American Society for Microbiology. All Rights Reserved

> Metabolic Control Analysis of Glycerol Synthesis in Saccharomyces cerevisiae Garth R. Cronwright,¹⁺ Johann M. Rohwer,² and Bernard A. Prior¹

Vol. 68, No. 9

Gartin R. Cronwright, Johann M. Konwer, and Bernard A. Prior Department of Microbiology¹ and Department of Biochemistry,² Stellenbosch University Matikhand 7602, South Africa

Adding new pathways

Eur. J. Biochem. 268, 3930-3936 (2001) © FEBS 2001

In situ kinetic analysis of glyoxalase I and glyoxalase II in *Saccharomyces cerevisiae*

Ana Margarida Martins¹, Pedro Mendes², Carlos Cordeiro^{1,3} and Ana Ponces Freire^{1,3}

Integrated model prediction was more accurate than the model with the simple branch kinetics

Keeping track of all these models

Many different models No standardized model description Different simulation engines

JWS Online

Database of models Models can be run via client-server system Used for reviewing models by journals Link to SBML, YSBN, BMBF

JWS Online

Accessible and executable via the internet (Windows, Apple, Linux), all you need is a browser and java runtime environment (J2RE), 3 mirror sites:

Africa: http://jjj.biochem.sun.ac.za Europe: http://jjj.bio.vu.nl North America: http://jjj.vbi.vt.edu; caltech 2005

The Silicon C	ell: detailed metabolic m	odels			
Detailed glycolytic model in Zactoconcur lants: < model	Hoefbagel et al 2002	10112	sheel	-	
Bycolynia w Pogramowa Ariacel - goobil	Balder et al 2001	mint.	sheet		
Computational Model for Olycogenolysis in Skeletal Muscle - model	Lambeth et al 2002	1000	sheel		
browate brainfier in Lactococcur Lactin - incide	Hoelbagel et al 2002	in the second second	sheed		Merobology
Rycolynic al Caecharomyeau corrotatao - 100-lei	Trussic et al 2000	10122	sheet		
location accompilation in suggestance - minuted	Balances et al 2001	max.	sheed		
factorial photophotoantirease optimis - model	Babserr et al 2001	more	sheel		
Internane synthesis pathway in E. coli - model	Chastagola et al 2005	more .	chead.		
Caretics of Histone Gene Expression - medal	Easter et al 1988	Barry C.	cheal		
Recolens in Elecoharomyces convention, 6 variables - midel	Galazzo et al 1990	10.152	sheel		
all state model of givenipsis in Electrospectr convision - model	Hypen et al 2001	THE OWNER	sheel		
Sumficution of Short Term Signaling by the Epidemial GFR - produ-	Ehsledenko et al 1999	mint	sheed		
ind Rissol Coll Madel a model	Milmer et al.		shead		
dechanism of protection of percendance actively by accidatory distances - model	Others at al 2003	-	sheed		Rig 7 Banchess
branne model of Recharachia coli trastochan operan - model	Bharten et al 2005	-	cheed		In J Booten
ACA of Obviewal Southering in Sacoharowayore conservation - model	Otrewnalit et al 2003		sheet		
Automatical modeling of the area varia , model	Maher et al., 2003		-		For J Baches
know model of the laugh-sour between the varianage - model	Chaies at al 2007	-	-test		Big J Birchen
Andeling Photocombeng and its costingly model	Posimas et al - 2000	-	shead		
hill Crede Model - model	Types at al 2001	-	sheet		
n nto karete: analysis of glyonalase I and glyonalase II in Succharomyces - model	Martene et al 2001	10.111	sheed		Ent J Brochen
Caretic model of Instant ervitarcovtes - model	Holdsttter et al 2004	10.00	sheed		
Control of entry- and extermolecular pressures activation - model	Fuentrs et al 3004	-	sheed		
DE showherdates and knasstakeardates control - model	Romberg at al. 2004	-	sheed		
lattaned outdations in standard - model	Malarman at al 1990	-	-tend		
Andeling the dynamics of the yeast observations autoway - model	E-stabilet al 2004		sheet		
Among modeling of the central carbon metabolism - model	Charrageole et al 2002	increase in	sheed		
he STAT Module Can Function as a Englance Amplitude Filter - model	Manna et al 2005		sheed		
lintability Analytes of a Campare Activation Model - model *	Entrang et al 2004		sheel		
Sugarizative assessment of the glyondase pathway in Leutenana inflation - model *	Silve et al 2005		sheed		PERC 1
A Computational Model of Matchondrial Decorrencie/olde Metabolism - model *	Bradshaw et al 2005	-	sheed		
dodeling the EOF receptor and MAP imate dynamics - model *	Schoeberl et al 2002 (est)	(Margard	sheel		
Burt term terministics of energy another that the Bardwards of Park , multi-	Representation at all 2005		-trad		TRUE I

1

Cell cycle model Tyson et al., 2001

Understanding the system/model: MCA

System/model so complex and complicated that one needs a higher level language to study it.

MCA, allows for a high level quantitiative description, e.g. list the 5 most important enzymes responsible for systemic steady state behavior.

MCA, in addition to description also allows for understanding, expression of Control Coefficients in Elasticity Coefficients.

Building the Silicon Cell

Integration of research efforts

To model a whole cell, efforts must be combined: e.g. agreement on cell strain, growth conditions, coordination, standards,

Combining top-down and bottom-up approaches

Acknowledgements

Johann Rohwer, Jannie Hofmeyr Triple-J group for Molecular Cell Physiology University of Stellenbosch Stellenbosch

Pedro Mendes, Virginia BioInformatics Institute Blacksburg, VA

Frank Bruggeman, Vrije Universiteit Amsterdam, NL